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Section 1. Overview

1.1.What is EXLAF77

ExXLAF77 has been designed and developed as an extended general-purpose
mathematical library callable from applications that require error-free and/or variable-precision
floating-point computations. Its first version supports:

basic arithmetical operations on exact (i.e. signed integer and rational) and variable-
precision real and complex floating-point numbers;

guaranteed-accuracy variable-precision evaluation of a number of simplest
transcendental functions included in the Fortran-77 standard,;

basic vector-vector, matrix-vector, and matrix-matrix algebraic operations for dense real
and complex vectors and matrices, represented as uniform arrays of machine native or
multi-precision floating-point numbers;

arbitrarily accurate solution of systems of linear equations with dense real and complex
square matrices including general, Hermitian positive-definite and indefinite ones;

arbitrarily accurate solution of eigenvalue problems for dense real and complex square
matrices of the same kinds.

EXLAF77 is intended mainly for applied computations rather then academic research. It
does not support specific math operations implemented in computer algebra systems (primality
tests, modular arithmetical procedures, etc.), nor does it use advanced algorithms for
processing very long numbers, such as Karatsuba method, FFT, and others. Thus, it should not
be treated as a new CAS.

Instead, EXLAF77 offers a number of features that provide extended automatism, flexibility,
and reliability when being used as a low-level library called from scientific and engineering
applications. In particular:

it executes operations on objects of abstract types so that the user does not have to
know and explicitly declare types of the computational results;

it automatically recognizes types and precision of operands, converts them to a highest
type, and selects an appropriate representation form for the result;

it detects all computational anomalies, such as underflow, overflow, square root of
negative value etc., and selects a proper representation form for the result to produce a
correct output;

it allows operations on mixed-type operands, when one of them has a machine native
type, while another one is represented by an object of abstract type, or they have
different precision;

when evaluating transcendental functions it provides user-defined accuracy without any
adjustment of system parameters or repeated calculations.
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for executing vector and matrix operations it uses a bitwise-optimized arithmetical
engine that illustrates a quite reasonable speed of processing uniform arrays of
moderately big floats;

its external interfaces make it possible for the user's application to create and
manipulate non-uniform (i.e. mixed-type) arrays of arbitrary objects;

it includes interface tools for importing and exporting numerical data in machine native
formats, supports unformatted 1/0 operations with user-defined binary files and
formatted text 1/O;

finally, it does not require some specific programming environment, and can be easily
integrated with any Fortran-77, Fortran-90/95, C, or C++ application.

Some of those features allow easy development of guaranteed-precision algorithms that
check precision of computational results and repeat calculations with incremental increase of
their working precision until required accuracy is reached.

The first EXLAF77 version is developed for X86 platform. It is a good workhorse for applied
computations in the fields of computational geometry, stability analysis, numerical solution of ill-
conditioned, ill-posed and other problems sensitive to round-off errors.

1.2. Why Fortran-77?

As it is widely known, a big percentage of currently used applied codes is written in Fortran-
77 just due to a huge accumulated amount of highly optimized and exhaustively tested Fortran
libraries that are compatible with virtually any OS and hardware platform. Fortran-77 code has
simplest and most straightforward interfaces since it does not require any extra environment like
headers, make-files, or preprocessors. In addition, it possesses one-way compatibility with
codes written in modern languages. For example, it is not a problem to build a cross-language
application that would include low-level Fortran-77 routines callable from high-level Fortran-
90/95, C or C++ modules.

However, the inverse calling sequence, such as calling C++ library from a Fortran code, in
general case cannot be implemented so easily. That is why Fortran-oriented interfaces seem to
be the most convenient for supporting software development in different environments specified
by programming language, OS, and hardware platform.

EXLAF77 offers a number of features of the most advanced languages, such as abstraction
mechanism, exceptions handling, and dynamic memory allocation to software developers who
write their codes in more conservative languages. As far as EXLAF77 is callable from Fortran-77
it can be easily embedded in any application written in Fortran-90/95, C, or C++ as well.

1.3. Handled Objects

EXLAF77 math objects accessible from external applications are identified by their unique
“handles” represented by integer variables. In this manual they are called “Handled Objects” or

just “H-objects”. EXLAF77 executes operations on the following classes of H-objects:

signed and unsigned infinities;
short (4-byte) and arbitrarily long signed Integer numbers;
arbitrarily long signed rational numbers;
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single (4-byte) and double (8-byte) precision real and complex floating-point numbers;

arbitrarily long real and complex floating-point numbers;

dense real and complex vectors represented as uniform arrays of single or double
precision floating-point numbers;

dense real and complex vectors represented as uniform arrays of arbitrarily long floating-
point numbers;

dense real and complex square and rectangular matrices represented as uniform arrays
of floating-point numbers of the same kinds;

dense real and complex Hermitian matrices represented as uniform arrays of floating-
point numbers of the same kinds and stored in a packed form;

complete triangular decompositions of general real and complex square matrices in the
same representations;

complete triangular decompositions of real and complex positive-definite and indefinite
Hermitian matrices in the same representations;

Hessenberg forms of general real and complex square matrices in the same
representations;

tridiagonal forms of real and complex positive-definite and indefinite Hermitian matrices
in the same representations.

When executing operations ExLAF77 allows using abstract handles as operands.
Therefore, the user’s application can perform any meaningful operation without explicit type
declarations for its operands and the result. For example, multiplication a-A, where a is a finite
number and A is a matrix, does not require extra specifications whether a is real or complex,
whether it has an exact, machine native or multi-precision representation. Similarly, operand A
can be referenced as an abstract matrix without knowing whether it is general or Hermitian, real
or complex, etc.

1.4. Create&Assign and Update Operations

Operations supported by EXLAF77 can be divided into four main groups: a) arithmetical
operations on numbers, b) algebraic vector/matrix operations, c) evaluation of math constants
and functions, and d) system tools, I/O and miscellaneous operations.

Arithmetical operations on numbers include:

operations of assigning finite values to floating-point numbers and real/imaginary parts of
complex numbers with automatic type conversion;

comparison operations similar to the Fortran . EQ. , . LT. , and . GI. logical operators
(last two for real numbers);

tests for zero, negative, and positive value (last two for real numbers);

absolute and complex-conjugate values, extraction of real and imaginary parts similar to
the Fortran ABS, CONJ, REAL, and | MAG generic intrinsic functions;

unary “+” and “- ” operations;
four standard arithmetical binary operations (+, - , *,/);
multiplication by an integer power of 2;



integer quotient and remainder in division of two exact numbers;
extraction of integer numerator and denominator of an exact number;
test for parity of an integer number;

minimum, maximum, and “machine epsilon” values for given sizes of mantissa and
exponent fields of a multi-precision real float.

Arithmetical operations with floating-point and mixed-type operands are realized in two
versions: so-called “Create&Assign” and “Update” ones. Each Create&Assign operation
creates a new resulting H-object whose type is appropriately selected to represent a correct
output. However, in cases of undefined result Create&Assign operations generate errors.

In contrast, Update operations try to assign the result to an existing H-object and generate
errors in cases of type incompatibility, overflow, underflow etc. Arithmetical operations with
exact operands are realized only in the Create&Assign version, i.e. exact numbers cannot be
updated.

Algebraic vector/matrix operations include:

assign operations with automatic type conversion;
assigning finite values to selected elements or their imaginary/real parts;

splitting into imaginary and real parts, and constructing complex conjugate vectors and
matrices;

multiplication and division by a finite number;

addition, subtraction, left and right multiplication;

linear combination of two vectors or matrices with a matrix factor;

vector and matrix dot products;

triangular decomposition of square matrices;

multiple-RHS solution of linear algebraic systems with an option of transposed matrix;
transformation of square matrices to Hessenberg or tridiagonal form;

solution of linear eigenvalue problems.

Simplest algebraic vector/matrix operations are realized in both Create&Assign and Update
versions. Triangular decompositions, transformations to Hessenberg and tridiagonal forms, and
solvers of linear eigenvalue problems are represented by their Update versions only.

EXLAF77 evaluates the following math constants, algebraic and transcendental functions:

» constants [, €, and In2;
factorial of a natural number;
square root (SQRT);
exponential function (EXP) and natural logarithm (L OG);
sine (S| N), cosine (COS), and tangent (TAN);
arc sine (ASI N), arc cosine (ACOS), and arc tangent (ATAN);
arc tangent of two real arguments (ATAN2);
hyperbolic sine (SI NH), cosine (COSH), and tangent (TANH);



inverse hyperbolic sine (ASI NH), cosine (ACOSH), and tangent (ATANH).

Square root and transcendental functions accept any abstract number as an argument and
return result of user-defined bit accuracy. Generally, types of the output results of those
functions are not known in advance since they depend on arithmetical values of arguments. For
this reason all the functions are realized in Create&Assign versions only.

System tools, I/O and miscellaneous operations include:

formatted decimal output of numbers and selected vector/matrix elements to a text
string;

text input of numerical data with an option of creating and initializing numbers whose
type has to be automatically selected in accordance with format of the input string;

binary I/O operations with user-defined files that read and write H-objects via user-
supported callback subroutines;

transformation of Fortran numbers and numerical arrays into Hobjects and the inverse
operations;

operations of creating, initializing, and deleting H-objects;

information on class membership and specific properties of H-objects;
dynamic masking and unmasking of error messages;

dynamic switching of floating-point underflow control (allowed/not allowed);
opening and closing EXLAF77 working session.

1.5. User Interface

All the operations are executed via calling EXLAF77 interface subroutines described in this
Manual. To open ExXLAF77 working session the Fortran application should call subroutine
HI NI T that sets a number of user-defined parameters and initializes system data structures
used by low-level subsystems for memory managing, exceptions handling, floating-point errors
detecting, etc. Note that no one of EXLAF77 functions can work properly until the system is
initialized. To close working session the user’s application should call subroutine HEXI T that
removes all the created Hobjects and auxiliary data structures from computer memory, and
closes system log file.

Therefore, all other EXLAF77 operations can be executed only between consecutive calls
HI NI T and HEXI T. Before closing working session the user’s application should save all
required data, i.e. output them to text string(s), write to binary file(s), or convert them to machine
native types and store in respective Fortran variables and arrays. EXLAF77 working session can
be repeatedly opened and closed as many times as necessary during program run.

Fortran program identifies each of Hobjects by a unique | NTEGER variable (handle) that
stores an absolute address of the Hobject in computer memory. Calling code can use handles
like all other variables, i.e. declare arrays of handles, use them as elements of common blocks,
parameters of subprograms, etc., but it should never modify their values.

Operations are executed by calling respective interface subroutines that accept handles as
actual parameters. For example, let | NTEGER variables | NUM | VECT, | MATRin user’s code
serve as handles of previously created finite number a, vector X, and square matrix A. Then
statements



CALL HUVHH( INUM INUM L', *100)
CALL HUWHH( IVECT, INUM L', *200 )
CALL HUVHH( I MATR, INUM 'L, *300 )
CALL HUMHH( | MATR, | VECT, 'R, *400 )
CALL HUVHH( | MATR, | MATR 'L, *500 )

invoke Update multiplication operations a = a-a, X = X-a, A= A4, X = AX, X=X-A, and A =
A-A respectively. The 3rd parameter of HUVHH specifies the operand to be updated, and the
4-th one defines a label for the alternate (erroneous) return.

EXLAF77 Update operations modify existing H-objects identified by their handles, while
Create&Assign operations create new H-objects and associate them with given | NTEGER
variables that serve as handles in succeeding operations. Interface subroutines intended
specifically for creating new H-objects behave like Create&Assign operations, i.e. associate new
H-objects with | NTEGER variables. On deleting H-objects their handles are set to zero.

EXLAF77 interface subroutines realize exceptions handling via Fortran-77 alternate return
mechanism. Lists of formal parameters of virtually all of those subroutines include asterisk and
the RETURN 1 statement is executed when an exception is caught. The calling Fortran code
should specify statement labels as respective actual parameters and make provision for
appropriate processing erroneous events. In particular, the Fortran code can inquire for
numerical error code, analyze it, and try to recover the error in run time (e.g. by increasing
accuracy of calculations).

Erroneous values of actual parameters detected by interface subroutines before calling
EXLAF77 kernel math procedures are processed as if they would catch exceptions. Thus, any
run-time error regardless of its nature results in execution of the alternate return statement. By
default, detection of any error is accompanied with recording a brief message to the user-
defined log file. However, if the user’'s code processes and recovers some “harmless” erroneous
events it can mask selected kinds of errors or even all of them to suppress over-filling log file
with multiple useless messages.

1.6. Limitations

EXLAF77 does not use advanced algorithms for executing arithmetical operations on very
long numbers just because it is not intended for pure academic fields of researches such. as
computational number theory. However, it illustrates a good performance for moderately long
numbers. Note that the first EXLAF77 version has been developed without programming
optimization.

Design of EXLAF77 internal data structures imply two limitations to the way of storing H-
objects and sizes of extended numbers:

all operands of any math operation should be stored in computer RAM (incore), and the
result of operation is always placed incore as well.

each of mantissa and exponent fields of multi-precision floating-point numbers cannot
exceed 2*'- 1 bits (about 256 Mbytes) in size;

However, in applied computations those limitations are not too restrictive.
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Section 2. H-Object Classification

EXLAF77 is written in C++. Its architecture is based on a strict classification of mathematical
objects and operations expressed in terms of C++ class hierarchies. Probably, not all of the
software developers who write their codes in Fortran are quite familiar with C++ inheritance
mechanism, so it might seem that this section cannot be useful for them. However, use of
EXLAF77 implies a very general comprehension of the classification rather than C++ itself.
Presented in this section hierarchy charts are understandable on an intuitive level that does not
require deep immersion in programming details. They are particularly helpful for development of
generalized algorithms that safely manipulate abstract handles while keeping compatibility of
operations with types of operands.

Note: In this manual the “Fortran number”, “Fortran operand”, etc. mean a number
represented in one of hardware-supported formats: | NTEGER, REAL, DOUBLE PRECI SI ON,
COVPLEX, or DOUBLE COMPLEX.

2.1. Hierarchy ANumber

EXLAF77 executes arithmetical operations on numbers represented in different forms. All of
them are united in hierarchy derived from the base abstract class ANumber (see Chart 2.1-1
below).

The abstract classes introduce operations valid for all their descendants. If, for example, an
EXLAF77 interface subroutine performing a binary operation accepts arguments of the abstract
type AFFloat, then any combination of six particular kinds of numbers (CFReal4, CFReal8,
CFRealX, CFComplex4, CFComplex8, CFComplexX) can be processed by that subroutine.
Thus, the hierarchy explicitly classifies different kinds of numbers by the criterion of applicability
of math operations. Operations introduced by the abstract classes are listed in the Table 2.1-1
below.

Table 2.1-1. Distribution of Operations over Hierarchy ANumber

Class Name and

Abstraction Scope Main Operations

ANumber . EQ and test for zero

Generic number = Create&Assign unary operations +, - , ABS, CONJ, REAL, | MAG

= Create&Assign binary +, -, *,/ with a Fortran number as the right
operand, and multiplication by 2"

» Create&Assign binary +,-,*,/ with the right operand ANumber

= Formatted I/O

AReal = LT.,.GI.,and test for sign

Real number = Integer quotient and remainder in division
= Conversion to a Fortran number

AComplex No extra operations

Complex number

AFReal = Integer quotient and remainder in division

Finite real number | ® Conversion to Fortran standard floating-point types
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Class Name and
Abstraction Scope

Main Operations

AFRealFloat

Real floating-point
number

Creation of a real number with specified lengths of its mantissa and
exponent fields

Assignment of a real Fortran number or H-number AFReal

Update unary operations - , ABS, CONJ, SQRT, and inverse
Update binary +, - , *,/ with a real Fortran number as the right
operand, and multiplication by 2"

Update binary +, -, *,/ with the right operand AFReal

Setting min, max, and “machine epsilon” values.

AFComplex Conversion to Fortran standard floating-point types

Finite complex

number

AFComplexFloat Creation of a complex number with specified lengths of the mantissa

Complex floating-
point number

and exponent fields of its real and imaginary parts

Assignment of a real or complex Fortran number or Hnumber AFinite
Selective assignment of a real Fortran number or H-number AFReal
to the real or imaginary part

Update unary operations - , ABS, CONJ, SQRT, and inverse

Update binary +, - , *,/ with a real or complex Fortran as the right
operand, and multiplication by 2"
Update binary +, -, *,/ with the right operand AFinite

AFRealExact

Real number in
exact
representation

Extraction of numerator and denominator

AFInteger
Integer number

Test for parity.

However, the system of different kinds of numbers, their machine representations, and a
variety of permissible operations cannot be described by a simple tree-structured scheme. It is
often necessary to use concretization sequence based on alternative criteria. As the standard
C++ multiple inheritance mechanism is unable to resolve this problem efficiently, hierarchy
ANumber is supplemented with two switch classes that unify some important operations. When
being used in EXLAF77 interfaces each of them should be treated as an ordinary abstract base

class.



Chart 2.1-1 Hierarchy ANumber -I — abstract class [F — inheritance

-l — switch class

4
- — concrete class .~ —pseudo-inheritance (programming
- _ wrapper class emulation of multiple inheritance)
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Table 2.1-2. Switch Classes Derived from ANumber

Class Name and

Abstraction Scope Unified Operations

AFinite = Conversion to standard Fortran floating-point types
Generic finite number | ® Create&Assign_multiplication by H-vector AVector and H-matrix
AMatrix (see sections 2.1, 2.2 below)

AFFloat = Assignment of a Fortran number or H-number AFinite
Floating-point number | = Update versions of all the arithmetical operations

Note that the mixed-type assignment and Update binary operations that combine real and
complex operands are originally illegal if they imply assigning complex result to a real number.
Since in these cases there is no way produce any meaningful result, EXLAF77 processes such
operations as run-time errors and output message “ASSI GN COMPLEX TO REAL". If there is
a danger of arising errors of this kind the user’'s code should check whether the respective
operands of assignment or an Update binary operation are real or complex before calling
respective EXLAF77 interface subroutine. This is specifically important if user’'s algorithm
manipulate abstract handles AFinite or AFFloat that do not make a difference between real and
complex numbers.

Wrapper classes serve as containers for the Fortran numerical variables. They are intended
for safe executing operations regardless of numerical values of operands. In contrast to
hardware-supported arithmetic and math procedures included in system libraries, operations on
H-objects of the wrapper classes never return invalid, erroneous or undefined values. Those
operations in run-time verify intermediate data and properly process all detected anomalies,
such as division by zero, underflow, overflow, square root of negative argument, and many
others. On discovering invalid data Create&Assign operations appropriately change type of the
resulting H-object, while Update operations generate errors.

Table 2.1-3. Wrapper Classes Derived from ANumber

Class Name Data Members Respective Fortran-77 Type
CFlInteger4 32-bit signed integer | NTEGER
CFReal4 32-bit IEEE floating-point number REAL
CFReal8 64-bit IEEE floating-point number DOUBLE PRECI SI ON
CFComplex4 A pair of 32-bit IEEE floating-point numbers | COVPLEX
CFComplex8 A pair of 64-bit IEEE floating-point numbers | DOUBLE COVPLEX

Concrete classes listed in the Table 2.1-2 below introduce types of numbers that do not
have equivalent hardware-supported representations.

Table 2.1-4. Concrete Classes Derived from ANumber

Class Name Number Kind
CInfSigned Signed (real) infinity
CiInfUnsigned Unsigned (complex) infinity
CFintegerX Extended signed integer number
CFRational Extended signed rational number, represented as a pair of AFIinteger
CFRealX Extended floating-point real number
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Class Name Number Kind

CFComplexX Extended floating-point complex number represented as a uniform pair of
CFRealX with a common precision specifier

2.2.Hierarchy AVector

Vectors and matrices have different sense in physics. For example, four different product
operations are defined for physical vectors: dot, conjugate dot, Cartesian, and cross products.
First three of them have obvious generalizations for matrix operands, while the last one does
not have any sense for matrices. Furthermore, in contrast to linear algebra, tensor calculus
typically does not require qualifying a vector as a “row” or “column”. This makes the cause for
using separate representations for vectors and matrices.

Currently EXLAF77 executes operations only on dense vectors stored as uniform arrays of
real and complex numbers. Representations of vectors are united in the hierarchy derived from
the base abstract class AVector (see Chart 2.2-1). Its nearest descendant AUVector is intended
for deriving only floating-point, i.e. approximate vector representations that makes it possible to
add in future a parallel inheritance branch for dense vectors in exact representations.

AVector and its abstract descendants introduce the following operations:

Table 2.2-1. Distribution of Operations over Hierarchy AVector

Class Name and

Abstraction Scope Main Operations

AVector = . EQ and test for zero

Generic dense vector | ® Create&Assign vector unary operations +, - , CONJ, REAL, | MAG

= Create&Assign vector-vector binary + and —

= Create&Assign multiplication and division by a Fortran number or
H-number AFinite

= Create&Assign dot and conjugate dot vector products

= Create&Assign_ multiplication by H-matrix AUMatrix

» Finding element of maximum or minimum norm

= Conversion to a Fortran array

= Extraction of selected element

= Formatted 1/O of selected element

AUVector = Creation a vector with specified lengths of the mantissa and

Dense vector exponent fields of its elements

composed of uniform | * Initialization by a real Fortran array

floating-point numbers | ® Assignment of a real Fortran number or H-number AFReal to
selected element

= Assignment of H-vector AUVectorReal

= Update vector unary operations - and CONJ

= Update vector-vector binary + and — with the right operand
AUVectorReal

= Update multiplication and division by a real Fortran number or H-
number AFReal

= Update left and right multiplications by a real H-matrix AUMatrixSq

AUVectorReal » Finding maximum or minimum element

Dense uniform real
vector
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Class Name and

Abstraction Scope Main Operations

AUVectorCompl = [nitialization by a complex Fortran array
Dense uniform = Assignment of a complex Fortran number or H-number AFinite to
complex vector selected element

= Selective assignment of a real Fortran number or H-number
AFReal to the real or imaginary part of selected element

= Assignment of H-vector AUVector

= Update vector-vector binary + and — with the right operand
AUVector

= Update multiplication and division by a complex Fortran number or
H-number AFinite

= Update left and right multiplications by a complex H-matrix
AUMatrixSq

= Update solution of a single-RHS linear algebraic complex system
with an option of matrix transposition (left- and right multiplications
by H-object AUCompletelLU)

Mixed-type assignment and Update binary vector-number, vector-vector, and vector-matrix
operations that combine real and complex operands are potentially dangerous. To avoid run-
time errors resulted from attempts of assigning complex numbers to real ones, the user’s code
should check in advance whether the respective operands are real or complex.

Table 2.2-2 below explains composition of the concrete descendant classes:

Table 2.2-2. Concrete Classes Derived from AVector

Class Name Internal Representation
CUVectorReal4 Array of n 32-bit IEEE floating-point numbers
CUVectorReal8 Array of n 64-bit IEEE floating-point numbers
CUVectorReal X Array of n CFRealX with a common precision specifier
CUVectorCompl4 Array of 2-n 32-bit IEEE floating-point numbers
CUVectorCompl8 Array of 2-n 64-bit IEEE floating-point numbers
CUVectorComplX Array of n CFComplX with a common precision specifier

Here n denotes dimension of a vector.

2.3. Hierarchy AMatrix

EXLAF77 supports a number of basic linear algebra operations on dense matrices stored as
uniform arrays of real and complex floating-point numbers. Their representations are united in
hierarchy with the base abstract class AMatrix (see Chart 2.3-1 below). Just as AVector, the
class AMatrix is reserved for future deriving a parallel inheritance branch for exact
representations of dense matrices.

Class AUMatrixRect unites matrices with strictly different dimensions. i.e. square matrices
have mandatory membership AUMatrixSg. Descendants of AUMatrixSqHerm have an internal
signature specifier that indicates whether the matrix is positive-definite or indefinite. The
signature specifier should be explicitly initialized at the stage of creating Hermitian H-matrix.

.Operations introduced by AMatrix and its abstract descendants are listed in the Tables 3.2-
1 and 3.2-2 below. They are similar to AUVector operations with the exception of transferring
operations specific for real or complex matrices from abstract to switch classes.
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Table 2.3-1. Distribution of Operations over Hierarchy AMatrix

Class Name and
Abstraction Scope

Main Operations

AMatrix
Generic dense matrix

. EQ and test for zero

» Create&Assign matrix unary operations +, - , CONJ, REAL, | MAG
= Create&Assign_matrix-matrix binary + and -

Create&Assign multiplication and division by a Fortran number or
H-number AFinite

Create&Assign multiplication by H-vector AUVector
Create&Assign multiplication by H-matrix AUMatrix
Create&Assign generalized conjugate dot matrix product
Conversion to a Fortran array

Extraction of selected element, row, or column

Formatted I/O of selected element

AUMatrix

Dense matrix
composed of uniform
floating-point numbers

Creation of a matrix with specified lengths of the mantissa and

exponent fields of its elements

= |nitialization of selected row, column, or entire matrix by a real
Fortran array

= Assignment of a real Fortran number or H-number AFReal to a
selected element

= Assignment of H-vector AUVectorReal to selected row or column

= Assignment of H-matrix AUMatrixReal

» Update matrix unary operations - and CONJ

= Update matrix-matrix binary + and — with the right operand
AUMatrixReal

= Update multiplication and division by a real Fortran number or H-
number AFReal

= Update left and right multiplications by a real H-matrix

AUMatrixSq

AUMatrixRect

Dense uniform strictly
rectangular matrix

No extra operations

AUMatrixSq

Dense uniform square
matrix

No extra operations. H-objects of the class can participate in Update
operations of complete LU-decomposition and transformation to
Hessenberg form introduced by AUCompleteLU and AUHessenberg

AUMatrixSgGen

General dense uniform
square matrix in the full
storage format

No extra operations. H-objects of the class can participate in Update
operations of complete LU-decomposition and transformation to
Hessenberg form introduced by AUCompleteLUGen and
AUHessenbergGen

AUMatrixSgHerm
Dense uniform
Hermitian matrix in the
packed storage format

No extra operations. H-objects of the class can participate in Update
operations of complete LU-decomposition and transformation to
Hessenberg form introduced by AUCompleteLUHerm and
AUHessenbergHerm

Table 2.3-2. Switch Classes Derived from AMatrix

Class Name and
Abstraction Scope

Unified Operations

AUMatrixReal L]

Generic real dense
uniform matrix

No extra operations
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Class Name and
Abstraction Scope

Unified Operations

AUMatrixCompl "

Generic complex
dense uniform matrix

Initialization of selected row, column, or entire matrix by a complex
Fortran array

Assignment of a complex Fortran number or H-number AFinite to
selected element

Selective assignment of a real Fortran number or H-number AFReal
to the real or imaginary part of selected element

Assignment of H-vector AUVector to selected row or column
Assignment of H-matrix AUMatrix

Update matrix-matrix binary + and — with the right operand
AUMatrix

Update multiplication and division by a complex Fortran number or
H-number AFinite

Update left and right multiplications by a complex H-matrix
AUMatrixSq

Update solution of a multiple-RHS linear algebraic complex system
with an option of matrix transposition (left- and right multiplications
by H-object AUCompletelU)

Mixed-type assignment and Update binary matrix-number, matrix-vector, and matrix-matrix
operations that combine real and complex operands are potentially dangerous. To avoid run-
time errors resulted from attempts of assigning complex numbers to real ones, the user’s code
should check in advance whether the respective operands are real or complex.

Table 2.3-3 below explains composition of the concrete descendant classes:

Table 2.3-3. Concrete Classes Derived from AMatrix

Class Name Internal Representation
CUMatrixRectReal4 Array of n-m 32-bit IEEE floating-point numbers
CUMatrixRectReal8 Array of n-m 64-bit IEEE floating-point numbers
CUMatrixRectRealX Array of n-m CFRealX with a common precision specifier
CUMatrixRectCompl4 Array of 2-n-m 32-bit IEEE floating-point numbers
CUMatrixRectCompl8 Array of 2-n-m 64-bit IEEE floating-point numbers
CUMatrixRectComplX Array of n-m CFComplX with a common precision specifier
CUMatrixSqGenReal4 Array of n® 32-bit IEEE floating-point numbers
CUMatrixSqGenReal8 Array of n” 64-bit IEEE floating-point numbers
CUMatrixSqGenReal X Array of n> CFRealX with a common precision specifier
CUMatrixSqgGenCompl4 Array of 2 n” 32-bit IEEE floating-point numbers
CUMatrixSgGenCompl8 Array of 2-n” 64-bit IEEE floating-point numbers
CUMatrixSgGenComplX Array of n> CFComplX with a common precision specifier
CUMatrixSgHermReal4 Array of n-(n+1)/2 32-bit IEEE floating-point numbers
CUMatrixSgHermReal8 Array of n-(n+1)/2 64-bit IEEE floating-point number
CUMatrixSgHermRealX Array of n-(n+1)/2 CFRealX with a common precision specifier
CUMatrixSqHermCompl4 | Array of n-(n+1) 32-bit IEEE floating-point numbers
CUMatrixSqHermCompl8 | Array of n-(n+1) 64-bit IEEE floating-point numbers
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Class Name

Internal Representation

CUMatrixSqHermComplX

Array of n-(n+1)/2 CFComplX with a common precision
specifier

Here n and m denote dimensions of a matrix.

2.4. Hierarchy ACompleteLU

EXLAF77 linear algebra operations include solving dense systems of linear equations of the
forms: AX = b, XA = b, A X =B and X-A = B, where A is an H-matrix AUMatrixSq, b and x
are Hvectors AUVector, B and X are Hmatrices AUMatrix. Depending on particular kind of the
matrix A one of two standard complete triangular decomposition methods is used:

= Crout's LU-factorization with partial pivoting for general Hmatrices AUMatrixSqGen and
indefinite Hermitian H-matrices AUMatrixSgHerm;

= Cholesky’'s U'U-factorization for  positive  definite  Hermitian  H-matric

AUMatrixSqHerm;

es

In addition to triangular factors the result of LU-decomposition includes permutation vector
used when computing solution for a given RHS. Hierarchy with the base abstract class
ACompleteLU illustrated by Chart 2.4-1 below holds respective data structures. ACompleteLU
and Its abstract descendants introduce the following operations:

Table 4.2-1. Distribution of Operations over Hierarchy ACompletelLU

Class Name and
Abstraction Scope

Main Operations

ACompleteLU

Factored form of a generic
dense square matrix

No extra operations. Reserved for deriving factored forms of
exact matrices.

AUCompleteLU

Factored form of a uniform
dense square matrix
composed of floating-point
numbers

= Update complete LU decomposition of H-matrix
AUMatrixSq

= Create&Assign solution of a single-RHS linear algebraic
system with an option of matrix transposition (left and right
Create&Assign multiplications by Hvector AUVector)

= Update solution of a single-RHS linear real algebraic
system with an option of matrix transposition (Update left
and right multiplications by Hvector AUVector)

= Create&Assign solution of a multiple-RHS linear algebraic
system with an option of matrix transposition
(Create&Assign left and right multiplications by H-matrix
AUMatrix)

= Update solution of a multiple-RHS linear real algebraic
system with an option of matrix transposition (Update left
and right multiplications by H-matrix AUMatrix)

AUCompleteLUGen

Factored form of a general
uniform dense square matrix
in the full storage format

No extra operations. The class implements Crout’s LU-
decomposition method with partial pivoting
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Class Name and

Abstraction Scope Main Operations

AUCompleteLUHerm No extra operations. The class implements Cholesky’s U'U-
Factored form of a Hermitian | decomposition for positive definite matrices, and LU-
uniform dense square matrix | decomposition with partial pivoting for indefinite ones

in the packed or full storage
format

Note that all of LU-factorization methods are realized in the Update versions only, i.e. they
store factored matrix on the place of the original one. Therefore, the original Hmatrix appears to
be overwritten during decomposition. Mixed-type Update operation of solving linear system with
a complex matrix and a real RHS generates a run-time error at the stage of assigning complex
solution to RHS.

Similarly to AUVector and AUMatrix concrete classes derived from AUCompleteLU are
specified by binary representations of the internal floating-point data:

Table 2.4-2. Concrete Classes Derived from ACompleteLU

Class Name Internal Representation of Floating-Point Data

CUCompleteLUGenReal4 32-bit IEEE floating-point data
CUCompleteLUGenCompl4
CUCompleteLUHermReal4
CUCompleteLUHermCompl4

CUCompleteLUGenReal8 64-bit IEEE floating-point data
CUCompleteLUGenCompl8
CUCompleteLUHermReal8
CUCompleteLUHermCompl8

CUCompleteLUGenRealX Extended floating-point numbers CFRealX or CFComplexX
CUCompleteLUGenComplX | with a common precision specifier
CUCompleteLUHermRealX
CUCompleteLUHermComplX

2.5. Hierarchy AHessenberg

EXLAF77 supports solution of linear eigenvalue problems A-X = X:L for dense square H
matrices AUMatrixSq. Its current version includes only algorithms for simultaneous computing
all the eigenvalues L and eigenvectors X stored as Hvector AUVector and Hmatrix AUMatrix
respectively. Depending on particular kind of the matrix A one of two following numerical
procedures is used:

» Transformation of Hmatrix AUMatrixSqGen to Hessenberg form by elementary stable
non-orthogonal transformations and LR-algorithm for computing eigenvalues and
eigenvectors of the Hessenberg matrix;

» Householder’'s transformation of Hmatrix AUMatrixSqHerm to tridiagonal form and QL-
algorithm for computing eigenvalues and eigenvectors of the tridiagonal matrix.

Hierarchy with the base abstract AHessenberg (see Chart 2.5-1 below) holds intermediate
data structures composed of Hessenberg or tridiagonal matrix, triangular transformation matrix,
and permutation vector. Its abstract classes introduce the following operations:
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Table 5.2-1. Distribution of Operations over Hierarchy AHessenberg

Class Name and

Abstraction Scope Main Operations

AHessenberg No extra operations. Reserved for deriving Hessenberg forms

Hessenberg form of a generic | Of exact matrices.
dense square matrix

AUHessenberg = Update transformation of H-matrix AUMatrixSq to
Hessenberg form of a uniform Hessenbergl/tridiagonal form

dense square matrix = Update solution of a linear eigenvalue problem for a given
composed of floating-point Hessenberg/tridiagonal matrix form

numbers

AUHessenbergGen No extra operations. The class implements elementary stable

Hessenberg form of a genera' n0n-0rth090na| tranSformationS and LR'algonthm

uniform dense square matrix
in the full storage format

AUHessenbergHerm No extra operations. The class implements Householder’s
Tridiagonal form of a transformation and QL-algorithm

Hermitian uniform dense

square matrix in the packed
storage format

Transformation procedures have only in Update versions since Hessenberg matrix form
always overwrites the original Hmatrix matrix. When solving an eigenvalue problem the output
eigenvector matrix overwrites input Hessenberg form as well.

Like descendants of AUVector, AUMatrix, and AUCompleteLU concrete classes derived
from AUHessenberg are specified in accordance with binary representations of the internal
floating-point data:

Table 2.5-2. Concrete Classes Derived from AHessenberg

Class Name Internal Representation of Floating-Point Data

CUHessenbergGenReal4 32-bit IEEE floating-point data
CUHessenbergGenCompl4
CUHessenbergHermReal4
CUHessenbergHermCompl4

CUHessenbergGenReal8 64-bit IEEE floating-point data
CUHessenbergGenCompl8
CUHessenbergHermReal8
CUHessenbergHermCompl8

CUHessenbergGenReal X Extended floating-point numbers CFRealX or CFComplexX
CUHessenbergGenComplX with a common precision specifier
CUHessenbergHermRealX
CUHessenbergHermComplX

Descendants of AUHessenberg do not have independent significance in the current
EXLAF77 configuration. They play part of “hidden” intermediate objects used only in the context
of two-step procedure of solving linear eigenvalue problems. Actual purpose of splitting that
procedure in two stages and introducing hierarchy AUHessenbers is keeping invariable
interfaces when further extending functionality of EXLAF77.
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2.6.Logical Class Indicators

As it was mentioned above, EXLAF77 Create&Assign operations automatically select the
type of output H-object to provide a proper representation for the result. This feature of Update
operations eliminates the necessity of explicit type declarations for intermediate and final data,
and allows manipulating Hobjects of unknown types via their abstract handles. However, in
some circumstances run-time verification of class membership of an Hobject is required to
avoid incompatibilities of a subsequent operation with types of its operands.

Let us consider a simple example. Suppose a user’s routine checks inequality Ox >y,
where X, y are H-numbers AFReal, and the square root is being computed by invoking
Create&Assign subroutine HASQRT. If X is negative then output handle of the HASQRT will be
associated with a new Hnumber AFComplexFloat representing principal value of the complex
square root OX. Since comparison operations > and < are not defined for complex operands,
subsequent calling subroutine HLGNN (. GT. ) will result n run-time error #0303 ‘COVPARE
COVPLEX NUMBERS’, see Appendix A. Hence, the user's code should check whether the
output H-number of HASQRT is real or complex before invoking HL GNN.

Necessity of run-time verifying some attribute of an Hobject arises in many cases. It is

particularly useful when executing mixed-type assignment and Update binary operations with a
real numerical, vector, or matrix left operand. If the right operand appears to be complex then

EXLAF77 generates run-time errors #0301 “ASSI GN COMPLEX TO REAL” and #404
“UPDATE OPERATI ON FAI LURE” respectively. So, the user’s code has to be responsible for
checking types of the operands and appropriate processing incompatibilities.

To support retrieving general attributes of H-objects referenced by abstract handles
EXLAF77 implements a set of logical indicators. For simplicity, in this manual they are called
LI SFI'N, LISREAL, LISFLT, LISNUM LISINT, LISVECT, LISMATR, LI SSQR,

LI SHERM LI SCLU, and LI SHES. Value of each indicator for a particular Hobject can be
inquired via calling respective interface subroutine. Table 2.6-1 below explains the meaning of
indicators and their definition for different classes.

Table 2.6-1. Definition of the Logical Indicators

. Interface
Indlca'\t/lor Name and Subroutine Definition
eaning
Name

LI SFI N - is H-object a finite | HLFI N
number or composition of
finite numbers?

. FALSE. for CiInfSigned and CinfUnsigned
. TRUE. for all other classes of H-objects

LI SREAL - is H-object a real | HLREAL . TRUE. for (pseudo)descendants of AReal,
number or composition of AUVectorReal, AUMatrixReal, and classes
real numbers? CUCompleteLUReal4,8, X,
CUHessenbergReal4,8,X

=. FALSE. for all other classes of H-objects

LI SFLT - is H-object HLFLT =. TRUE. for (pseudo)descendants of
inexact, i.e. floating-point AFFloat, AUVector, AUMatrix, AUCompleteLU,
number or composition of and AUHessenberg

floating-point numbers? =. FALSE. for descendants of AFRealExact

and classes CInfSigned, CinfUnsigned

LI SNUM- is H-object a HL NUM
number?

. TRUE. for descendants of ANumber
. FALSE. for all other classes of H-objects
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. Interface
Indicator Name and : A
Meaning Subroutine Definition
Name
LI SI NT - is H-object an HLI NT =. TRUE. for descendants of AFinteger
integer number? =. FALSE. for all other classes of H-objects
LI SVECT - is H-object a HLVECT =. TRUE. for descendants of AVector
vector? =. FALSE. for all other classes of H-objects
LI SMATR - is H-object a HLMATR =. TRUE. for descendants of AMatrix
matrix? =. FALSE. for all other classes of H-objects
LI SSOR - is H-object a HLMSQR =. TRUE. for descendants of AUMatrixSq,
(transformed) square matrix? AUCompIeteLU and AUHessenberg
. FALSE. for all other classes of H-objects
LI SHERM- is H-object a HLHERM =. TRUE. for descendants of
(transformed) Hermitian AUMatrixSqHerm, AUCompleteLUHerm, and
matrix? AUHessenbergHerm
=. FALSE. for all other classes of H-objects
LI SCLU - is H-object HLCLU =. TRUE. for descendants of ACompleteLU
complete LU-decomposition =. FALSE. for all other classes of H-objects
of a square matrix?
LI SHES - is H-object HLHES =. TRUE. for descendants of AHessenberg
Hessenberg form of a square =. FALSE. for all other classes of H-objects

matrix?

Subroutines returning values of the listed class indicators are described in section 4.6.
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Section 3. Executing Operations

3.1.Working Session

Use of EXLAF77 requires performing some auxiliary procedures on starting and finishing
the work. To start computations EXLAF77 has to open its log file (see section 3.2) and initialize
memory allocation protocol (see section 3.3). No one operation can be executed properly
without initializing the system. On finishing the work EXLAF77 has to close log file and remove
allocation protocol from computer memory. In addition, to avoid memory leaks it has to remove
all created H-objects on finishing the computations. Thus, the user’s code should explicitly open
and close interaction with EXLAF77 system subroutines HSI NI T and HSEXI T described in
section 4.3 support those procedures.

EXLAF77 executes the math operations during its working session, i.e. in the period
between calling HSI NI T and HSEXI T. Since it removes all the H-objects created during
computations, the user’s application has to output results and/or save required data using 1/O
and export subroutines:

» Write Hobjects to unformatted file(s) by calling the binary output subroutine HARI TE
described in section 4.19.

= Convert Hobjects or their parts to text strings by calling the text output subroutines
HGTNXO, HGTEVO, HGTEM) (unformatted output), HGTNX, HGTEV, HGTEM (formatted
output) described in section 4.20.

= Convert H-objects or their parts to Fortran variables or arrays by calling the export
subroutines HEFNX, HEFEV, HEFV, HEFEM HEFMR, HEFMC, HEFM described in
section 4.21.

EXLAF77 working session can be repeatedly opened and closed as many times as
necessary during program run.

3.2. Errors Handling

EXLAF77 detects a number of run-time errors. Each error is associated with a unique
numerical code and text error message. When discovering an error EXLAF77 output respective
numerical code and text message to its text log file opened by system subroutine HSI NI T on

starting working session (see 3.1). Run-time errors are divided into the following categories:

Resource Errors that can arise due to insufficiency of hardware resources. Example:
error #0001 “HEAP MEMORY ALLOCATI ON FAI LURE".
Interface Errors are generated on detecting invalid values of input parameters. Example:

error #0101 “ | NVALI D OBJECT HANDLE".
Floating Point Errors are generated on discovering abnormal results of floating-point

arithmetical operations. Example: error #0201 “FLOATI NG PO NT UNDERFLOW.
lllegal Operations errors arise in response to attempts of performing algorithmically

forbidden operations. Example: error #0301 “ASSI GN COVPLEX TO REAL".
Calculus Errors mean that the passed values of operands cannot be properly processed

due to algorithmic or other restrictions. Example: error #0401 “TOO Bl G ABS VALUE OF
ARGUNVENT™.
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Matrix Operation Errors are generated on detecting uncoordinated dimensions or other
attributes of vector and matrix operands. Example: error #501 “OPERANDS’ DI MENSI ONS
M SMATCH'.

Undefined Result errors stand for mathematical uncertainty of results of operations.
Example: #601 “DI VI DE ZERO BY ZERO'.

Programming Bugs signify internal EXLAF77 errors that should be reported to QNT
Software Development Inc.

Numerical codes and text messages of run-time errors are listed in Appendix A.

Note that EXLAF77 always treats undefined results and floating-point overflows as errors.
Processing floating-point underflows depends on setting an internal underflow control flag. If
underflow control is turned on then underflows are processed like all other run-time errors,
otherwise respective denormalized values are set to zero without generating errors. However,
regardless of current processing mode EXLAF77 internal representations of floating-point
numbers always remain valid, i.e. they never contain “pathological” bit patterns such as
denormalized values, *INF, and NaN,. One can switch underflow control flag in run time by
calling system subroutine HSUNDF described in section 4.4.

To make it possible for calling application to process erroneous events in run-time,
EXLAF77 interface subroutines are supplied with an extra alternate return parameter that is
always the last one in the argument list. When an error occurs during operation interface
subroutine appends associated numerical code and text message to the log file and executes
the alternate return statement RETURN 1. Therefore, the calling program can recognize the
error by its numerical code and properly process it in run-time. To retrieve error codes one
should use system subroutine HSERR described in section 4.4.

A variable-precision application can safely recover many typical computational anomalies
arising due to accumulation of round-off errors, such as underflow, overflow, algorithmic matrix
singularity, etc. The alternate return mechanism allows developing self-adjustable codes that
automatically perform all the necessary recovering actions. However, if the user's code
intensively uses alternate return and run-time error recovering it should be capable to suppress
appending respective text messages to the log-file. Without that capability size of the log-file
would progressively increase during program run due to multiple useless error messages.

EXLAF77 has a built-in tool for selective “masking” specified run-time errors. A masked
error results in alternate return like any other one, but does not produce text output. On starting
working session all errors are unmasked, i.e. every alternate return is accompanied with
appending a corresponding text message to the log file. With using system subroutines
HSEMSK, HSDMSK and HSMSKA (see section 4.4) the calling program can create a list of

masked errors, dynamically modify it, and switch modes of error masking.

3.3. Create&Assign Operations and Memory Management

Create&Assign operations introduced in section 1.4 above provide one of the most
important features of ExLAF77, namely, abstraction mechanism. When invoking such an
operation the user has not to know type of the result since the operation selects it automatically.
Resulting H-objects referenced by their abstract handles can be passed as operands to
subsequent operations, and so on.

Thus, EXLAF77 makes it possible to develop generalized computational procedures that
manipulate abstract handles and do not include explicit type declarations. In order to ensure
compatibility of intermediate operations with types of operands sometimes it is necessary to
check general properties of H-objects. However, it can be easily done via retrieving logical class
indicators without exact specifying the types (see section 2.6).
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Since intensive use of Create&Assign operations typically results in fast accumulating

multiple H-objects in computer memory, development of generalized algorithms requires

effective tools of memory release. The same tools appear to be very useful when developing

self-adjustable computational procedures that incrementally increase working precision until
required accuracy is reached.

EXLAF77 has a built-in memory manager based on tracking allocation and deallocation
events. It stores information on created Hobjects in a buffered dynamically extendable list
called ‘memory allocation protocol”. Each element of the protocol called “allocation node”
corresponds to a single Hobject located in system heap memory. Creating and deleting H
objects are accompanied with appropriate modifying the protocol. The simplest memory
managing operations: deleting a single H-object and deleting all Hobjects can be performed by
calling system subroutines HSDOBJ and HSDAL L described in section 4.5.

The memory allocation protocol can include void nodes called ‘“allocation marks” or just
“marks” that do not correspond to existing Hobjects. Allocation marks serve as pointers to
particular locations within the protocol intended for designating groups of subsequently created
H-objects. Like regular Hobjects, the marks are referenced by their unique handles. Hence,
they can be treated just as empty H-objects. System subroutines HSEMRK and HSDMRK
perform setting and removing allocation marks.

Manipulating marks allows single-call removing designated groups of H-objects from
memory. Consider a fragment of computational procedure with intensive use of Create&Assign
operations. When program running those operations create multiple temporary Hobjects that
should be deleted on exiting the fragment. In order to release memory allocated for temporary
objects it is enough to set allocation marks immediately before and after the fragment, and
remove all the objects by calling subroutine HSDGRP described in section 4.5.

After calling subroutines HSDOBJ , HSDAL L, HSDVRK, or HSDGRP handles to the removed
H-objects and allocation marks become invalid, i.e. they cannot be used as input parameters of
EXLAF77 subroutines until they are associated with other Hobjects or marks. Any attempt of
using handle to deleted object as an input parameter results in run-time error #0101 “| NVALI D
OBJECT HANDLE".

3.4. Creation and Initialization of H-Objects

3.4.1. Ways of Initialization

Ways of creating and initializing H-objects are closely connected with applicability of Update
operations. It is convenient to consider separately two main groups of Hobjects with different
values of the logical indicator LI SFLT (see section 2.6):

LI SFLT=. TRUE. Floating-point numbers and H-objects composed of them:
(pseudo)descendants of AFFloat, AUVector, AUMatrix, AUCompleteLU, and AUHessenberg.

LI SFLT=. FALSE. Classes CInfSigned, CinfUnsigned and exact numbers - descendants
of AFRealExact.

In general, Hobjects of the first group allow modifying their values without change of type,
i.e. they can appear as left operands of Update operations. Since values of those H-objects can
be repeatedly updated during program run, there is no mandatory necessity to initialize them at
the stage of creating. In many cases, it is more preferable to create “empty” variables of
appropriate types and use them in further computations like regular Fortran variables.

EXLAF77 includes four subroutines for creating empty floating-point H-numbers AFFloat, H-

vectors AUVector, general Hmatrices AUMatrixSqGen and AUMatrixCompl, and Hermitian H
matrices AUMatrixSqHerm: HWN, HW, HVW and HMMS respectively (see section 4.7).
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Elements of Hobjects created with those subroutines are set to zero. Other four subroutines,
HANF, HAVF, HAMF, and HAMSF described in section 4.8.2 create H-objects of the same kinds
and initialize them with Fortran variables and arrays. Subroutine HANXT creates real and
complex H-numbers AFFloat initialized with text strings (see sections 3.4.2 and 4.8.1).

In contrast, Hobjects of the second group typically change their sizes or/and types during
arithmetical operations. Implementation of Update operations for them would be unnatural since
it results in encumbering the code with run-time type verifications, memory reallocations, and
processing integer overflows. That is why EXLAF77 supports only Create&Assign operations for
H-objects of the second group.

Thus, exact and infinite numbers must always be initialized at the stage of creating. They
can participate in further Create&Assign and Update operations as right operands, but cannot
change their values. Currently EXLAF77 allows creating exact and infinite numbers with
initialization with text strings and floating-point Hnumbers. To perform those operations one
should use subroutines HANXT and XAXN described in sections 4.8.1 and 4.8.3 respectively.

3.4.2. Formats of Initializing Text Strings

Described in section 4.8.1 subroutine HANXT that create H-object ANumber and initialize it
with input text string, automatically selects type of new object according to the string format.
This section describes permissible formats of text representations of numbers and rules of
determining their types.

Text representation of any number cannot contain intermediate blanks. Hence, the input
string can contain only leading and trailing blanks. The following formal rules pre-determine type
of the created H-number:

1. Ifthe stringis either * | NF' or ‘i nf’ then H-number CinfUnsigned is created.

2. If the string is either * +I NF', “+inf’, “-INF, or ‘ -inf’ then H-number
CiInfSigned is created.

3. If the string contains character ‘/’ then Hnumber AFRealExact is created. In this
case the initializing string should have one of the following two formats:

<numerator>/ <denominator>
<sign><numerator>/ <denominator>

where <sign>={"+"| -"}
<numerator> = <digit><digit>...<digit>
<denominator> = <digit><digit>...<digit>
<digi>=={'0" 127|345 |6 |7]8]9}

The substrings <numerator> and <denominator> cannot be empty, and <denominator>
should contain at least one character different from ‘ O’ . The type and numerical value of

created object is determined as result of respective division.

4. |If the string contains character ‘,’ (comma) then H-number AFComplexFloat is
created. In this case the initializing string should have the following format:

“ (7 <real part>' , ’ <imaginary part>‘ )’
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where both <real part> and <imaginary part> substrings may have any form permitted for

text representation of real floating-point and integral numbers (see points 5 and 6 below).

HANXT selects precision of new complex floating-point H-number in accordance with maximum
number of significant digits in <real part> and <imaginary part>.

5. If the string contains neither substrings‘ | NF’ , ‘i nf’ nor characters* /' ,*,’ , butit
includes character ‘.’ (point) then H-number AFRealFloat is created; In this case the
initializing string should have one of the following six formats:

<mantissa>

<sign><mantissa>

<mantissa><exponent prefix><exponent>
<mantissa><exponent prefix><sign><exponent>
<sign><mantissa><exponent prefix><exponent>
<sign><mantissa><exponent prefix><sign><exponent>

where  <exponent prefix>={'E' | e’}
<mantissa> = <digit or point><digit or point >...<digit or point >
<exponent> = <digit><digit>...<digit>
<d|g|t or p0|nt>:{‘ 01 |I 11 |I 2’ |i 3’ |i 4’ |i 5’ I‘ 6’ I‘ 7! |‘ 81 |i 91 |i . ) }

The substrings <mantissa> and <exponent> cannot be empty and <mantissa> can contain
no more than one character ‘.’ (point). HANXT selects precision of new floating-point H
number in accordance with number of significant digits in <mantissa>.

6. If the string contains none of substrings * I NF’ , i nf’ and characters ‘/’,"*, ",
then H-number AFInteger is created. In this case, the initializing string should have one of
the following two forms:

<number>
<sign><number>

where <number> = <digit><digit>...<digit>. Substring <number> cannot be empty. HANXT
creates H-number CFinteger4 or CFIntegerX depending on value of the integer number.

Examples:

“inf’ CiInfUnsigned =l NF

‘- I NF negative CInfSigned =- | NF

“ 137’ CFinteger4 =137
*-999999999999999/ 3 CFIntegerX =- 333333333333333

‘ 42/ 12 CFRational =7/2

‘137.e-8 CFReal4 =1.3740°°
*3.1415926535897932384626433’ CFReaX =3.1415926535897932384626433
“(1.0,999999999999999) CFComplex8 =1+i%0.99999999999999x 0

Note that subroutines NUNT, HUEVT, and HUEMI performing update of floating-point H

numbers and selected elements of H-vectors and H-matrices with text strings (see section
4.9.1) accept string formats 3, 4, 5, and 6 above
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3.5. Output to Text Strings

EXLAF77 interface subroutines described in section 4.20 support formatted and
unformatted output of Hnumbers and selected elements of Hvectors and Hmatrices to text
strings. Subroutines HETNX, HETEV, and HETEM adjust format of output string in accordance
with user-defined parameters, while subroutines HETNXO, HETEVO, and HETEM) provide text
output with an automatic format selection.

Output text representations of Hnumbers have generally the same formats as input strings
of the subroutines HANXT, HUNT, HUEVT, and HUEMI (see section 3.4 above). Therefore,
strings generated by subroutines HETNX, HETNXO, HETEV, HETEVO, HETEM and HETEMD
can be used for approximate reproducing respective H-numbers, H-vectors, and H-matrices with
HANXT, HUNT, HUEVT, and HUEM .

Unformatted output mode implies left text alignment, i.e. non-blank characters start from the
beginning of text string, while unused right part of the string is padded with blanks. Automatic
selecting sizes of the mantissa and exponent fields of the floating-point H-numbers is performed
in such a way that guarantees output of all significant decimal digits encoded in their binary
representations. If the text string is not long enough to hold the number, then the string is
padded with asterisks.

Formatted output of real floating-point Hnumbers and elements or real Hvectors and H
matrices uses the very last of six permissible formats described in section 3.4:

<sign><mantissa><exponent prefix><sign><exponent>

where positions and structures of the <mantissa> and <exponent> fields are specified by
four user-defined integer parameters | W1 P, | M and | E. The first one specifies full width of
the output field that starts from the beginning of text string. Parameter | P defines position of
decimal point within the <mantissa> field, or in other words, scaling factor for mantissa. Last two
parameters | Mand | E specify numbers of decimal digits in the <mantissa> and <exponent>
fields. Thus, output text representation of a real floating-point H-number looks as follows:

JHodooooooooEMVMVMVMIVIME MVMVMVMVMVWMVIVWIVMVEER EEEEEEEEE
- [ Mr1 ® - —E—®
- I W ®

where characters [J, M and E denote blanks, decimal digits of mantissa and exponent
respectively. One can see that the full width | Wof output field should be equal to or greater than
| Vil E+4 to hold all decimal digits and four auxiliary characters. If this condition is not satisfied,
or | Wexceeds total length of the string, the output field is padded with asterisks.

In order to clarify the meaning of scaling parameter | P, compare output text

representations of the number P =3.1415926535897932384626433... with | \W=20, | ME=10,
| E=2 and different | P:

| P=-10: Ckkkkkkkkkhrkkkkkhkhkkk k!
| P= -0 Ckkkkkhkhkkkhhkxkhhkx k7
| P= -8: +0. 000000003E+09’
Il P=-7: +0. 000000031E+08’
| P= -6: +0. 000000314E+07
| P= -5 ¢ +0. 000003142E+06’
| P= -4: ¢ +0. 000031416E+05’
I P=-3: ¢ +0. 000314159E+04’
I

=-2: +0. 003141593E+03’
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‘ +0. 031415927E+02’
‘ +0. 314159265E+01’
‘ +3. 141592654E+00’
‘ +31. 41592654E- 01’
‘ +314. 1592654E- 02’
+3141. 592654E- 03’
‘ +31415. 92654E- 04’
‘ +314159. 2654E- 05’
‘ +3141592. 654E- 06’
‘ +31415926. 54E- 07’
‘ +314159265. 4E- 08’
= 10: +3141592654. E- 09’

e 11 L R R R I I b Sk S b S b b S b S b

I

P: 12 LI I b I S I S S S S S S

The same four integer parameters control output format for complex floating-point H-
numbers and elements of complex Hvectors and H-matrices. Text representation of a complex
floating-point number has the following form

“ (7 <real part>' , ’ <imaginary part>‘ )’

where both <real part> and <imaginary part> components are formatted like real floating-
point Hnumbers (see above) with the same values of parameters | W I P, | M and | E, and
without leading blanks. Therefore, full width | Wof the output field should be equal to or greater
than 2* (| M+l E) +11 to hold all decimal digits of the real and imaginary parts and eleven
auxiliary characters. If this condition is not satisfied, or | \Wexceeds total length of the string, the
output field is padded with asterisks.

Subroutine HETNX provides a uniform interface for formatted text output of generic H-
numbers referenced by abstract handles ANumber. The output field starts from the beginning of
text string and has full width | Wfor any particular kind of number. HETNX keeps right alignment
of non-blank characters, and pad unused left part of the output field with blanks.

In contrast to text output of floating-point Hnumbers, parameters | Mand | E are of no
importance for text representations of infinite and exact Hnumbers CinfSigned, CinfUnsigned,
AFRealEact. As to parameter | P, it is not significant for representations of infinite and integer
H-numbers CinfSigned, CInfUnsigned, AFInteger. However, when dealing with text output of
rational Hnumbers CFRational positive | P specifies position of the slash (' / ’ ) separating the
<numerator> and <denominator> fields, while zero | P sets the standard right alignment mode.
Compare output text representations of the rational number - 130321/ 279841 with | \\&15, and
different | P.

LI Rk I b b b S S Rk

* -130321/ 279841’
‘1279841 ’
‘*[279841 '
‘x*[279841 '
Crxx[279841 ’
CRxxX[279841 ’
CRxxxx][ 279841 '
fxERFEEX[279841
*-130321/ 279841 °
* -130321/ 279841

I



| P= 10: ° -130321/*****’
I P= 11: - 130321/ ****’
| P= 12: - 130321/ ***’
| P= 13: -130321/ **
| P= 14: - 130321/ *’
| P= 15: ° -130321/"
IP: 16 LI S % b S S S Ok S I I

3.6. Unformatted Binary 1/O

Subroutines HREAD and HWRI TE described in section 4.19 support unformatted 1/0O
operation with user-defined binary files. Design of their interfaces allows communicating with
binary files of arbitrary structures and mixing H-objects with any other data in one file.

OPEN and CLOSE statements are to be executed by the calling program that is solely
responsible for appropriate definition of the file attributes. Calling statements for the subroutines
HREAD and HARI TE have the following form:

CALL HREAD ( RCBACK, NsSIZE, |LH, *ERROR ) and
CALL HWRI TE( WCBACK, | LH *ERROR )

where | LH (I NTECGER) is a handle to Hobject, NSI ZE (I NTEGER) is the size of that H
object expressed in 32-bit words, ERRCR is a label for alternate return, see section 4.19. Finally,
RCBACK and WCBACK are symbolic names of user-supported callback subroutines that execute
respective READ and WRI TE operations depending on specific properties of the binary file.
Symbolic names RCBACK and WCBACK must appear in an EXTERNAL statement in the calling

rogram.
P gCalling statements used for invoking callback subroutines from HREAD and HWRI TE are
equivalent to the following ones:

CALL RCBACK( NSIZE, |ARRAY )and
CALL WCBACK( NSI ZE, | ARRAY )

where | ARRAY is an adjustable | NTEGER array that serve as container for the transferred
H-object, and NSI ZE (I NTECGER ) is the size of that H-object expressed in 32-bit words.

Before calling HREAD the user’'s code must retrieve a correct value of NSI ZE to make it
possible to allocate sufficient amount of memory for the Hobject to be read. Probably, writing
size of Hobject to the immediately preceding record is the best way of saving and restoring
NSI ZE when performing binary /0. The following are simplest examples of the callback
subroutines:

SUBROUTI NE RCB(NSI ZE, | ARRAY)
DI MENSI ON | ARRAY( NSI ZE)
READ(10) (1 ARRAY(1),1=1, NSI ZE)
RETURN

END

SUBROUTI NE WCB( NSI ZE, | ARRAY)
DI MENSI ON | ARRAY( NSI ZE)

WRI TE(10) NSI ZE

WRI TE(10) (1 ARRAY(1), =1, NSI ZE)
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RETURN
END

A fragment of the user’s code that performs binary I/O using HREAD, HARI TE, RCB, and
WCB should look as follows:

EXTERNAL RCB, WCB
| NTEGER NSI ZE, |LH

CALL HVRITE(WCB, ILH, *100)

READ(10) NSI ZE
CALL HREAD(RCB, NSIZE, ILH, *200)

In more compound programming contexts the callback subroutines can read and write
some extra data passed via COMMON blocks, thus allowing user’'s code to mix Hobjects and
other entities in one file.

3.7. Types of Automatically Created H-objects

Any of EXLAF77 Create&Assign arithmetical operations automatically selects the type of
resulting H-object that depends on both types and numerical values of the operands. Therefore,
type of the result is unpredictable in general case. An Update operation is equivalent to
combination of the corresponding Create&Assign operation, converting its result to a required
type, and updating the left hand side operand. This section documents the implemented formal
rules of selecting and converting types of H-objects.

3.7.1.Operations on Infinities and Divisions by Zero

EXLAF77 permits using infinite Hnumbers CinfSigned and CiInfUnsigned as operands of
unary and binary arithmetical operations. Some arithmetical operations and functions can output
infinite resulting values as well. Thus, H-objects CInfSigned and CinfUnsigned play an important
part in calculations since they allow using mathematically correct infinite values without
generating run-time errors. However, one should keep in mind that manipulation infinite H
numbers is potentially dangerous because of the risk of producing indefinite results. The tables
3.7.1-1, 3.7.1-2, and 3.7.1-3 below list arithmetical operations that can accept infinite operands
and/or produce infinite output values.



Table 3.7.1-1. Unary Create&Assign Operations on Infinite H-numbers
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Operand
Operation | glpce iine . il
CiInfUnsigned Positive CInfSigned | Negative CInfSigned
Unary plus | HACPYH CinfUnsigned Positive CInfSigned | Negative CinfSigned
Unary HANEGH CinfUnsigned Negative CinfSigned | Positive CInfSigned
minus
Complex [HACNJH ClnfUnsigned Positive CInfSigned | Negative CinfSigned

conjugate

Magnitude | HAABS

Positive CInfSigned Positive CInfSigned

Positive CInfSigned

Real part |HERH

Run-time error #608 Positive CInfSigned

“‘RE/ | M PART CF
UNSI GNED | NFI NI TY”

Negative CiInfSigned

Imaginary |HEIH
part

Run-time error #608 Zero CFInteger4d Zero CFInteger4d

“RE/ | M PART CF
UNSI GNED | NFI NI TY”

Table 3.7.1-2. Binary Create&Assign Addition with Infinite Operands
(Subroutine HAAHH)

First Summand

Second Summand

Result

CinfUnsigned

CinfUnsigned or CInfSigned

Run-time error #605 “SUBTRACT
INFINITY FROM | NFI NI TY”

H-number AFinite

CInfUnsigned

Positive CInfSigned

CiInfUnsigned or
negative CInfSigned

Run-time error #605 “SUBTRACT
INFINITY FROM | NFI NI TY”

H-number AFReal or
positive CInfUnsigned

Positive CInfSigned

H-number AFComplex

CiInfUnsigned

Negative CInfSigned

CInfUnsigned or
positive CInfSigned

Run-time error #605 “SUBTRACT
INFINITY FROM | NFI NI TY”

H-number AFReal or
negative CInfSigned

Negative CInfSigned

H-number AFComplex

CInfUnsigned

AFReal CInfUnsigned CInfUnsigned
Positive CInfSigned Positive CInfSigned
Negative CInfSigned Negative CInfSigned

AFComplex CinfUnsigned or CInfSigned CinfUnsigned

Table 3.7.1-3. Binary Create&Assign Subtraction with Infinite Operands
(Subroutine HASHH)

Minuend

Subtrahend

Result

CiInfUnsigned

CinfUnsigned or CInfSigned

Run-time error #605 “SUBTRACT
INFINITY FROM | NFI NI TY”

H-number AFinite

CInfUnsigned

Positive CInfSigned

CiInfUnsigned or
positive CInfSigned

Run-time error #605 “SUBTRACT
INFINITY FROM | NFI NI TY”

H-number AFReal or
negative CInfSigned

Positive CInfSigned

H-number AFComplex

CInfUnsigned
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Minuend

Subtrahend

Result

Negative CInfSigned

CiInfUnsigned or
negative CInfSigned

Run-time error #605 “SUBTRACT
I NFINITY FROM | NFI NI TY”

H-number AFReal or
positive CInfSigned

Negative CInfSigned

H-number AFComplex

CInfUnsigned

AFReal CInfUnsigned CInfUnsigned
Positive CInfSigned Negative CInfSigned
Negative CInfSigned Positive CInfSigned

AFComplex CiInfUnsigned or CinfSigned CiInfUnsigned

Table 3.7.1-4. Binary Create&Assign Multiplication with Infinite Operands
(Subroutine HAMHH)

First Factor

Second Factor

Result

CinfUnsigned

CiInfUnsigned, CInfSigned, or
nonzero H-number AFinite

CInfUnsigned

Zero H-number AFinite

Run-time error #603 “MJULTI PLY
| NFI NI TY BY ZERCO

Positive CInfSigned

CiInfUnsigned or
nonzero H-number AFComplex

CiInfUnsigned

Positive H-number AFReal or
positive CInfSigned

Positive CInfSigned

Negative H-number AFReal or
negative CInfSigned

Negative CInfSigned

Zero H-number AFinite

Run-time error #603 “MJULTI PLY
INFINITY BY ZERCO’

Negative CInfSigned

CiInfUnsigned or
nonzero H-number AFComplex

CiInfUnsigned

Positive H-number AFReal or
positive CInfSigned

Negative CInfSigned

Negative H-number AFReal or
negative CInfSigned

Positive CInfSigned

Zero H-number AFinite

Run-time error #603 “MJLTI PLY
| NFI NI TY BY ZERCO

Positive AFReal

CiInfUnsigned

CiInfUnsigned

Positive CInfSigned

Positive CInfSigned

Negative CInfSigned

Negative CInfSigned

Negative AFReal

CiInfUnsigned

CiInfUnsigned

Positive CInfSigned

Negative CInfSigned

Negative CInfSigned

Positive CInfSigned

Nonzero AFComplex

CInfUnsigned or CInfSigned

CInfUnsigned

Zero AFinite

CinfUnsigned or CInfSigned

Run-time error #603 “MULTI PLY
I NFI NI TY BY ZERO'

Table 3.7.1-5. Binary Create&Assign Division with Infinite Operands
(Subroutine HADHH)

Divide nd

Divisor

Result

CinfUnsigned

CinfUnsigned or CInfSigned

Run-time error #602 “Dl VI DE
INFINITY BY | NFINITY”
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Dividend

Divisor

Result

H-number AFinite

CInfUnsigned

Positive CInfSigned

CiInfUnsigned or CinfSigned

Run-time error #602 “Dl VI DE
I NFINITY BY | NFI NI TY”

Positive H-number AFReal

Positive CInfSigned

Negative H-number AFReal

Negative CInfSigned

H-number AFComplex or
zero AFReal

CiInfUnsigned

Negative CiInfSigned

CinfUnsigned or CInfSigned

Run-time error #602 “Dl VI DE
INFINITY BY INFINITY”

Positive H-number AFReal

Negative CInfSigned

Negative H-number AFReal

Positive CInfSigned

H-number AFComplex or
zero AFReal

CiInfUnsigned

AFReallExact

CInfUnsigned or CInfSigned

Zero CFinteger4

AFRealFloat

CiInfUnsigned

Zero AFComplexFloat of the same
FP-kind as the dividend (see
section 3.7.2)

CInfSigned

Zero AFRealFloat of the same FP-
kind as the dividend (see section
3.7.2)

AFComplexFloat

CinfUnsigned or CInfSigned

Zero AFComplexFloat of the same
FP-kind as the dividend (see
section 3.7.2)

If divisor is zero then subroutine HADHH generates run-time error #601 ‘Dl VI DE ZERO
BY ZERQO' or outputs CInfUnsigned depending on whether the dividend is zero or not.

3.7.2.Kinds of Floating-Point Numbers

Depending on the required precision of a floating-point number EXLAF77 uses one of binary

representations implemented

AFComplexFloat (see section 2.1 above):

in concrete descendant classes of AFRealFloat and

» FLOAT 4: Standard 32-bit IEEE representation implemented in the classes CFReal4
and CFComplex4, which contains 24-bit mantissa and 8-bit exponent fields.

= FLOAT 8: Standard 64-bit IEEE representation implemented in the classes CFReal8
and CFComplex8, which contains 53-bit mantissa and 11-bit exponent fields.

» FLOAT_X(NEXP, NWVNT) : Extended binary representation implemented in the classes
CFRealX and CFComplexX, which contains (32* NEXP)-bit exponent field and
(32* NIMNIT)-bit mantissa field. Positive integer parameters NEXP, NMVNT of the extended
representations denote sizes of the respective fields expressed in 32-bit words.

A particular binary representation uniquely defined by the bit sizes of mantissa and
exponent fields is referred to as FP-kind of a floating-point number regardless whether the

number is real or complex.

3.7.3. Selecting Types of Resulting H-objects

This section describes the rules of selecting type of result when performing Create&Assign

binary arithmetical

operations on finite H-objects AFinite, AUVector, AUMatrix, and
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AUCompleteLU. Results of operations are supposed to be finite as well. The cases of infinite
operands and/or results of operations are considered in section 3.7.1 above.
Subroutines HAAHH, HASHH, HAVHH, HADHH, and HADPHH described in section 4.13
select the type of output result in accordance with the following rules:

» If both operands are H-numbers AFRealExact then the resulting H-object is also a
descendant of AFRealExact. This is the only case when an operation produces no
round-off errors, i.e. it is performed in the error-free mode.

= |f at least one of the operands is a complex Hobject AFComplexFloat, AUVectorCompl,
AUMatrixCompl, or AUCompleteLUCompl then the resulting H-object belongs to the
same generic subclass of complex floating-point H-objects.

= If one of the operands is an H-number AFRealExact while another one is AFFloat,
AUVector, or AUMatrix then the resulting H-object has the same generic class
membership as the floating-point operand. Selected FP-kind of the resulting Hobject
(see 3.7.2) depends on values of its floating-point components. If no under- or overflows
occurred during operation then the result has exactly the same kind as the floating-point
operand (the default FP-kind).

= |f both operands are H-objects composed of floating-point numbers, i.e. they are
descendants of AFFloat, AUVector, AUMatrix, or AUCompleteLU then the resulting H
object has the default floating-point kind defined by the following table:

Table 3.7.3-1. Default Kinds of the Results of Binary Create&Assign Operations
with Floating-Point Operands (HAAHH, HASHH, HAMHH, HADHH, and HADPHH)

FP-Kind of the Second Operand

FP-Kind of the

First Operand FLOAT_X
p FLOAT 4 FLOAT_8 ( NEXP2, NVNT2)
FLOAT X
FLOAT 4 —
_ FLOAT 4 FLOAT_8 ( NEXP2, NVNT2)
FLOAT 8 FLOAT 8 FLOAT 8 FLOAT_X( NEXP2,

max( 2, NMNT2) )

FLOAT X FLOAT X FLOAT X(NEXP1, FLOAT_X

NEXP1, NWNT1) | ( NEXP1, NVNT1 (max( NEXP1, NEXP2) ,
( )| ( ) | max( NWNT1, 2)) max( NVNTL. NVNT2) )

However, if the default FP-kind cannot hold result of an operation because of overflow or
underflow, then the corresponding subroutine incrementally increases the size of exponent field
until an appropriate result representation is reached. Table 3.7.3-2 below illustrates the
sequence of stepwise extensions of the resulting FP-kind:

Table 3.7.3-2. Sequence of Extensions of the Default FP-Kind Caused by Under-
and Overflows (HAAHH, HASHH, HAMHH, HADHH, and HADPHH)

Default FP-Kind First Step Second Step
FLOAT_4 FLOAT_8 FLOAT X(1,1)
FLOAT_8 FLOAT X(1, 2) FLOAT X(2, 2)

FLOAT _X( NEXP, NIVNT) FLOAT_X(NEXP+1, NMNT) | FLOAT X( NEXP+2, NIVNT)

Note that in any case no one Create&Assign arithmetical operation requires more than two
extensions of the resulting FP-kind to eliminate underflow or overflow. In particular, when
transforming Hnumbers AFRealExact to a floating-point representation, the latter can never
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exceed FLOAT X( 1, *) since the bit size of any AFinteger is limited by 2*- 1 (see section

1.6).

3.8. Solving Systems of Linear Equations

EXLAF77 implements the standard two-stage numerical procedure of solving systems of
algebraic linear equations. First, one should perform complete triangular decomposition of the
matrix AUMatrixSq of linear system using subroutine HUCLU described in section 4.17. HUCLU
automatically selects an appropriate numerical method depending on particular kind of the
system’s matrix. It creates a corresponding H-object AUCompleteLU that contains triangular
factor(s) of the matrix and, for the cases of general and indefinite matrices, a permutation
vector. The output H-object AUCompleteLU is stored on the place of the input matrix
AUMatrixSq, i.e. on exiting HUCL U the original system’s matrix appears to be overwritten with

its factored form.

At the second stage the factored matrix is used for computing solution of the system for a
given right-hand side vector (RHS). In the context of solving linear equations it is convenient to
consider decomposed matrix just as a specific form of the inverse one. Therefore, there is no
reason to make difference between finding single- or multiple-RHS solution of the system and
multiplying H-object AUCompleteLU by the corresponding right-hand side H-vector or H-matrix.
One should perform the latter procedure with using subroutines HAMHH and HUMHH described

in section 4.13.

Subroutine HAMHH multiplies generic H-objects and stores resulting product in a new
created H-object (Create&Assign multiplication). Its calling statement has the following form:

CALL HAVHH(

| RH1,

| RH2, | LH,

* ERROR )

where | RHL and | RH2 are handles to the left and right factors respectively, and | LH is a
handle to the new Hobject initialized with their product. If one of the input handles | RH1 or
| RH2 is associated with an Hobject AUCompleteLU while another one is associated with H
object AUVector or AUMatrix, then the output handle | LH identifies H-object that is a solution of
the corresponding system of linear equations. Permissible combinations of the arguments
| RH1, | RH2 are listed in the Table3.7-1 below.

Table 3.7-1. Create&Assign Multiplications by H-objects AUCompleteLU

Argument | RH1

Argument | RH2

Result | H

AUCompleteLU — complete LU-
decomposition of a square non-
singular n by n H-matrix A

AUVector — n-vector b

AUVector — n-vector X that is a

solution of the system of linear
equations AxX=Db

AUCompleteLU — complete LU-
decomposition of a square non-
singular n by n H-matrix A

AUMatrix —n by m matrix B

AUMatrix —n by m matrix X
that is a solution of the system
of linear equations A-X = B

AUVector — n-vector b

AUCompleteLU — complete LU-
decomposition of a square non-
singular n by n H-matrix A

AUVector — n-vector X that is a
solution of the system of linear
equations X-A=Db

AUMatrix —m by n matrix B

AUCompleteLU — complete LU-
decomposition of a square non-
singular n by n H-matrix A

AUMatrix —m by n matrix X
that is a solution of the system
of linear equations X-A =B
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Subroutine HUMHH performs multiplications of floating-point Hobject by finite H-object and

updates the floating-point operand with the resulting product (Update multiplication). Its calling
statement has the following form:

CALL HUMHH(

| RH1, | RH2, SI DE,

*ERROR )

where | RH1 and | RH2 are handles to the left and right factors respectively, and S| DE is a
single-character text descriptor pointing the operand to be updated. If one of the input handles
| RH1 or | RH2 is associated with an Hobject AUCompleteLU while another one is associated
with Hobject AUVector or AUMatrix, then HUMHH updates the latter object with a solution the
corresponding system of linear equations. Permissible combinations of the arguments | RH1,
| RH2, and the descriptor SI DE are listed in the Table 3.7-2 below.

Table 3.7-2. Update Multiplications by H-objects AUCompleteLU

Argument | RH1 Argument | RH2 S| DE Operation
AUCompleteLU — complete | AUVector — n-vector b ‘R Vector b is updated with a
LU-decompo_smon of a solution x of the system of
square non-singular n by n linear equations Ax = b
H-matrix A
AUCompleteLU —complete | AUMatrix —n by m matrixB |* R Matrix B is updated with a
LU-decomposition of a solution X of the system of
square non-singular n by n linear equations A-X = B
H-matrix A
AUVector — n-vector b AUCompIeteL_U_ —complete ‘L Vector b is updated with a
LU-decomposition of a solution x of the system of
square non-singular n by n H- linear equations X-A = b
matrix A

AUMatrix —m by n matrix B | AUCompleteLU — complete ‘L Matrix B is updated with a

LU-decomposition of a
square non-singular n by n H-

matrix A

solution X of the system of
linear equations X-A =B
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Section 4. Interface Subroutines

Al the EXLAF77 interface subprograms callable from Fortran programs have
SUBRQUTI NE- like interfaces since Fortran FUNCTI ON-s do not provide the alternate return
option. So, they should be called via CALL statement like any other Fortran subroutine.

4.1. Routine Naming Conventions

Names of interface subroutines consist of no more than 6 upper-case characters for
compliance with Fortran-77 standards, and start with the letter H that indicates belonging to the
EXLAF77. (The leading letter is associated with “handle”).

The names are divided into two kinds: a) those exactly predefined by meaning of standard
operations and types of the operands, and b) all others names appointed for some specific or
“nonstandard” procedures.

Routine names have the following structure:

H <code of operation> [{<modifier>|<unique name>}][<operand type>[<operand type>]].

The <code of operation> field is a single-character specifier of a standard operation.

M Make: Create new H-object without initialization.
Create&Assign: Create new H-object initialized with result of an operation.

A
U Update: Update existing H-object.
E

Extract: Extract part of Hobject in a text or numerical representation, or create
new H-object initialized with a part of existing one.

F Function: Create new H-number initialized with computed value of a function

C Constant: Create new H-number initialized with computed value of a math
constant.

L Logical: Compare two H-numbers, or get logical class indicator.

G Get: Retrieve parameter of H-object or its element.

S System: General-purpose system subroutine. The letter S may be followed by

one of two extra single-character specifiers.
E Enable or Establish
D Disable or Delete

Names with <code of operation> = E, F, L, G and S{ E| D} belong to the kind (b)
mentioned above. The subsequent <unique name> field provides a specific name for each
subroutine of the kind.

Names with <code of operation> = M A, and U belong to the kind (a). The subsequent
<modifier> field provides additional details of the operation.
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NEG

CNJ

D

DP
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Copy: Make a copy of H-object (Create&Assign unary +)
Negate: Change sign of H-object

Conjugate: Complex conjugate of H-object

Add. Binary arithmetical operation +

Subtract. Binary arithmetical operation -

Multiply. Binary arithmetical operation *

Divide. Binary arithmetical operation /

Dot Product of H-vectors or H-matrices

The <operand type> field following the <modifier> or <unique name> specifies types of the

operands.

H
X
N

NX

EV

Examples:

Any H-object

Exact number AFRealExact

Floating-point Number AFFloat

Any object ANumber including CinfSigned and CinfUnsigned
Vector AUVector

Element of AUVector

Matrix AUMatrix

Hermitian (Symmetrical) matrix AUHermitian
Element of AUMatrix

Row of AUMatrix

Column of AUMatrix

Fortran data

Text string

Real part of Hobject

Imaginary part of Hobject



HUEMF Update element of existing AUMatrix with Fortran variable
HANXT Create new object ANumber and initialize it with a text string
HAAHH Create new H-object and initialize it with the sum of two existing H-objects

HSI NI T System subroutine opening EXLAF77 working session

4.2. Specifying Fortran Data Types

Many of EXLAF77 operations accept native Fortran data as operands. Since interface
subroutines are unable to recognize the types of actual arguments, the calling statements have
to contain explicit descriptions of the data types. Specifying Fortran data types is supported by
an auxiliary single-character (CHARACTER* 1) descriptor that immediately precedes respective
“Fortran operand” in the parameter list. Table 4.2.1 below summarizes permissible values of the
type descriptors.

Table 4.2-1. Descriptors of the Fortran Data Types

Type Descriptor Fortran Type
ol | NTEGER
) REAL
‘D DOUBLE PRECI SI ON
‘C COVPLEX
VA DOUBLE COWVPLEX

If the passed actual value of type descriptor does not coincide with any of the listed ones
then interface subroutine generate error #103 “* UNRECOGNI ZED TEXT DESCRI PTOR'. Note
that converting Hobjects into Fortran | NTEGER type currently is not allowed, i.e. respective
export subroutines treat descriptor ‘ 1’ as an illegal one.

When invoking ExLAF77 operations with “Fortran operands” it is critically important to
ensure strict accordance of type descriptors with actual data types. Incorrect specifying Fortran
types usually results in irregular computational errors hard to detect.

4.3.0pening and Closing Working Session

ExXLAF77 working session should be opened and closed by calling system subroutines
HSI NI T and HSEXI T described below.

SUBROUTI NE HSI NI T( FI LENAVE, HEAPSI ZE, *ERROR )

Opens ExLAF77 working session

Input Parameters

FI LENAME CHARACTER*. Name for the EXLAF77 log file or path with a name. HSI NI T

automatically adds extension . LOG to the file name. If path is not specified then
the log file is created in the current directory. If the specified file already exists, it
is opened in “append” mode, otherwise a new file is created. If empty string is
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passed as actual parameter then the default file EXLAF77. LOG in the current
directory is created.

HEAPSI ZE | NTEGER. Maximum size of available heap memory in Mbytes. This parameter
is introduced to restrict uncontrollable physical memory overflow that typically
result in OS deadlock due to intensive swapping. Provided that the amount of
memory used by other concurrently running applications is negligible compared
with EXLAF77, one can increase HEAPSI ZE up to 80-90% of total amount of
computer RAM.

Output Parameters

ERROR Alternate return argument.

Remarks

HSI NI T should be called on starting every EXLAF77 working session. Repeated calling
HSI NI T before closing current working session produce no effect. For details of the opening
procedure see section 3.1 above.

SUBROUTI NE HSEXI T

Closes EXLAF77 working session

Remarks

Repeated calling HSEXI T before opening working session produce no effect. For details of
the closing procedure see section 3.1 above.

4.4. Handling Run-Time Errors

EXLAF77 provides a mechanism for run-time processing errors that can arise during
computations. For details of the error handling procedures see section 3.2.

SUBROUTI NE HSERR( | CODE )

Retrieves numerical code of last run-time error

Output Parameters

| CODE | NTEGER. Numerical code of the most recent run-time error.

Remarks

Numerical error code is stored as a global EXLAF77 internal variable that is set to zero
when opening working session. Every run-time error resulting in an alternate return resets its
value in accordance with Table A-1 of Appendix A



46

SUBROUTI NE HSEMBK( | CODE )

Masks text massages of run-time error

Input Parameters

| CODE | NTEGER. Numerical code of the run-time error to be masked.

Remarks

On opening EXLAF77 working session all run-time errors are unmasked. Calling HSEMSK
suppresses text messages of the specified error. If that error has already been masked or
passed value of | CODE does not coincide with any code from Table A1 of Appendix A then
HSEMSK produces no effect.

SUBROUTI NE HSDVBK( | CODE )

Unmasks text massages of run-time error

Input Parameters

| CODE | NTEGER. Numerical code of the run-time error to be unmasked.

Remarks

Calling HSDIVSK resumes writing text messages of the specified error to EXLAF77 log file. If

that error has already been unmasked or passed value of | CODE does not coincide with any
code from Table A-1 of Appendix A, then HSDMSK produces no effect.

SUBROUTI NE HSMSKA(  MODE )

Sets mode of masking error messages

Input Parameters

MODE | NTEGER. Specifies global mode of masking error messages:
MODE = 0 - Unconditionally suppress all error messages;
MODE = 1 - Suppress only the messages explicitly masked by HSEMSK;
MODE = 2 - Unmask all run-time errors and resume writing all messages to
the log file.

Remarks

Initially, on opening EXLAF77 working session, all run-time errors are unmasked. Calling
HSMSKA with MODE = 0 suppresses all the error messages while keeping list of errors that
have been previously masked by HSEMSK. Setting MODE = 1 resumes selective masking in
accordance with that list. Invoking HSMSKA with MODE = 2 restores the initial state, i.e.
resumes writing all error messages to the log file and clears the list of masked errors.
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IfMODE * 0,1, or 2 then HSMSKA produce no effect.

SUBROUTI NE HSUNDF( LFLAG )

Switches mode of floating-point underflow control

Input Parameters

LFLAG LOG CAL. Specifies the mode of the floating-point underflow control:
MODE=. TRUE. - Enable underflow control;
MODE=. FALSE. - Disable underflow control.

Remarks
On opening working session the underflow control is enabled, i.e. floating-point underflows

are treated like all other run-time errors. After disabling the control, underflows do not indicate
errors while resulting denormalized values are set to zero.

4.5. Releasing Memory

SUBROUTI NE HSDOBJ( | H *ERROR )

Deletes H-object

Input Parameters
| H | NTEGER. Handle to the H-object to be deleted.
Output Parameters
ERROR Alternate return argument.
Remarks
Handle | H becomes invalid after deleting Hobject it is associated with. Henceforth | H

cannot be used as an input parameter of any EXLAF77 subroutine until it is associated with
another H-object.

SUBROUTI NE HSDALL

Deletes all H-objects

Remarks

HSDALL removes all the H-objects created during current working session without closing
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SUBROUTI NE HSEMRK( | HVRK, * ERRCR )

Sets memory allocation mark

Output Parameters

| HVRK | NTEGER. Handle to the new allocation mark.
ERROR Alternate return argument.
Remarks

For details of using memory allocation marks see section 3.3.

SUBROUTI NE HSDVRK( | HVRK, * ERROR )

Removes memory allocation mark

Input/Output Parameters

I HVRK | NTEGER. Handle to the allocation mark to be removed.
Output Parameters

ERROR Alternate return argument.

Remarks

Handle | HIVRK becomes invalid after removing the mark it is associated with. For details of
using memory allocation marks see section 3.3.

SUBROUTI NE HSDGRP( | HVRK1, | HVRK2, *ERROR )

Deletes designated group of H-objects

Input Parameters

| HVRK1 | NTEGER. Handle to the starting allocation mark. If | HVRK1 = 0 then the
designated group of H-objects starts with the very first one.

| HVRK2 | NTEGER. Handle to the final allocation mark. If | HVRK2 = 0 then the
designated group of H-objects concludes with the very last one.

Output Parameters

ERROR Alternate return argument.

Remarks

HSDGRP deletes all H-objects in the range between allocation marks | HVRK1 and
| HVRKZ2, i.e. those created after setting mark | HVRK1, but before setting | HVRKZ. It removes
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the final mark | HVRK2 as well. Handles to deleted H-objects and | HVRK2 become invalid. For
details of using memory allocation marks see section 3.3.

4.6. Retrieving Information on H-Objects

SUBROUTI NE HLFI N( IH, LISFIN, *ERROR )

Is H-object finite?

Input Parameters

I H

| NTEGER. Handle to H-object.

Output Parameters

LI SFI' N

ERROR

LOG CAL.
LI SFI N=. FALSE. —for CInfSigned and CinfUnsigned,
LI SFI N=. TRUE. —for all other classes of H-objects.

Alternate return argument.

SUBROUTI NE HLREAL( | H LI SREAL, *ERRCR )

Is H-object real?

Input Parameters

I H

| NTEGER. Handle to H-object.

Output Parameters

LI SREAL

ERROR

LOG CAL.

LI SREAL=. TRUE. —for (pseudo)descendants of AReal, AUVectorReal,
AUMatrixReal, and classes CUCompleteLUReal4,8,X, CUHessenbergReal4,8,X.
LI SREAL=. FALSE. - for all other classes of H-objects.

Alternate return argument.

SUBROUTI NE HLFLT( IH, LISFLT, *ERROR )

Is H-object composed of floating-point numbers?

Input Parameters

I H

| NTEGER. Handle to H-object.

Output Parameters

LI SFLT

LOG CAL.
LI SFLT=. TRUE. —for (pseudo)descendants of AFFloat, AUVector,
AUMatrix, AUCompleteLU, and AUHessenberg;



50

LI SFLT=. FALSE. —for descendants of AFRealExact and classes CInfSigned,

CinfUnsigned.

ERROR Alternate return argument.

SUBROUTI NE HLNUM | H, LISNUM *ERRCR )

Is H-object a number?

Input Parameters
I H | NTEGER. Handle to H-object.
Output Parameters

LI SNUM LOd CAL.
LI SNUME. TRUE. —for descendants of ANumber;

LI SNUME. FALSE. —for all other classes of H-objects.

ERROR Alternate return argument.

SUBROUTI NE HLI NT( I HX, LI SI NT, *ERRCR )

Is H-number an integer number?

Input Parameters
| H | NTEGER. Handle to H-object.
Output Parameters

LI SI NT LOG CAL.
LI SI NT=. TRUE. - for descendants of AFinteger;

LI SI NT=. FALSE. —for all other classes of H-objects.

ERROR Alternate return argument.

SUBROUTI NE HLVECT( | H LI SVECT, *ERRCR )

Is H-object a vector?

Input Parameters
I H | NTEGER. Handle to H-object.
Output Parameters

LI SVECT LOG CAL.
LI SVECT=. TRUE. - for descendants of AVector;

LI SVECT=. FALSE. —for all other classes of H-objects.

ERROR Alternate return argument.
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SUBROUTI NE HLMATR( | H, LI SVATR, *ERROR )

Is H-object a matrix ?

Input Parameters
I H | NTEGER. Handle to H-object.
Output Parameters
LI SVATR  LCG CAL.
LI SMATR=. TRUE. - for descendants of AMatrix;
LI SMATR=. FALSE. —for all other classes of H-objects.

ERROR Alternate return argument.

SUBROUTI NE HLMSQR( |'H, LI SSOR *ERRCR )

Is H-object a (transformed) square matrix?

Input Parameters
| H | NTEGER. Handle to H-object.
Output Parameters
LI SSORM  LOG CAL.
LI SSQRVE. TRUE. - for descendants of. AUMatrixSq, AUCompleteLU, and

AUHessenberg;
LI SSOQRVE. FALSE. —for all other classes of H-objects.

ERROR Alternate return argument.

SUBROUTI NE HLHERM( | H, LI SHERV, *ERROR )

Is H-object a (transformed) Hermitian matrix?

Input Parameters
I H | NTEGER. Handle to H-object.
Output Parameters
LI SHERM  LOGQ CAL.
LI SHERVE. TRUE. —for descendants of AUMatrixSgHerm,

AUCompleteLUHerm, and AUHessenbergHerm;
LI SHERVE. FALSE. —for all other classes of H-objects.

ERROR Alternate return argument.
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SUBROUTI NE HLCLW | H, LISCLU, *ERRCR )

Is H-object a complete LU decomposition of square matrix?

Input Parameters
I H | NTEGER. Handle to H-object.

Output Parameters

LI SCLU LOG CAL.
LI SCLU=. TRUE. - for descendants of. AUCompletelLU;
LI SCLU=. FALSE. —for all other classes of H-objects.
ERROR Alternate return argument.

SUBROUTI NE HLHES( | H, LISHES, *ERROR )

Is H-object a Hessenberg form of square matrix?

Input Parameters

| H | NTEGER. Handle to the Hobject.

Output Parameters

LI SHES LOG CAL.
LI SHES=. TRUE. - for descendants of. AUHessenberg;
LI SHES=. FALSE. —for all other classes of H-objects.

ERROR Alternate return argument.

SUBROUTI NE HLZERO( | H, LI SZERO, *ERRCR )

Is H-object zero?

Input Parameters
I H | NTEGER. Handle to H-object.
Output Parameters

LI SZERO  LOd CAL.
LI SZEROC=. TRUE. -—the H-object| Hhas zero value;

LI SZERO=. FALSE. - the H-object | Hhas a non zero value.

ERROR Alternate return argument.

Remarks

Output result . TRUE. for H-vector or H-matrix means that all its elements are equal to

Zero.
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SUBROUTI NE HLNXPO( | HNX, LI SPOS, *ERRCR )

Is real H-number positive

?

Input Parameters

I HNX | NTEGER
Output Parameters

LI SPOS LOG CAL

LI SPOS=
LI SPOS=

. Handle to H-number AReal;

. TRUE. —the H-number | HNX is positive;
. FALSE. —the H-number | HNX is zero or negative.

ERROR Alternate return argument.

SUBROUTI NE HLNXNE

( IHNX, LI SNEG *ERROR )

Is real H-number negative?

Input Parameters
I HNX | NTEGER
Output Parameters

LI SNEG LOGE CAL
LI SNEG=
LI SNEG=

. Handle to H-number AReal.

. TRUE. —the H-number | HNX is negative;
. FALSE. - the H-number | HNXis zero or positive.

ERROR Alternate return argument.

SUBROUTI NE HLEVPQO( | HV, | NDEX, LI SPCS, *ERROR )

Is element of real H-vector positive?

Input Parameters

| HV | NTEGER.
| NDEX | NTEGER.
number).

Output Parameters

Handle to H-vector AUVectorReal.

Index of the selected element of the H-vector | HV (positive

LI SPOS LOGE CAL.

LI SPOS=
LI SPOS=
negative.

. TRUE. —the | NDEX-th element of the H-vector | HV is positive;
. FALSE. —the | NDEX-th element of the H-vector | HV is zero or

ERROR Alternate return argument.



SUBROUTI NE HLEVNE( | HV, | NDEX, LI SNEG, *ERROR )

Is element of real H-vector negative?

Input Parameters
| HV | NTEGER. Handle to H-vector AUVectorReal.
| NDEX | NTEGER. Index of the selected element of the H-vector | HV (positive number).
Output Parameters
LI SNEG LOG CAL.
LI SNEG=. TRUE. -the | NDEX-th element of the H-vector | HV is negative;
LI SNEG=. FALSE. —the | NDEX-th element of the H-vector | HV is zero or

positive.

ERROR Alternate return argument.

SUBROUTI NE HLEMPO( | HM, | ROW | COL, LI SPCS, *ERROR )

Is element of real H-matrix positive?

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrixReal.

| ROV | NTEGER. Row ndex of the selected element of the H-matrix | HM (positive
number).

| COL | NTEGER. Column index of the selected element of the H-matrix | HMV (positive
number).

Output Parameters

LI SPOS LOG CAL.
LI SPOS=. TRUE. —the (I ROW I COL) -th element of the H-matrix | HVis
positive;
LI SPOS=. FALSE. —the (| ROW | CCOL) -th element of the H-matrix | HMis
zero or negative.

ERROR Alternate return argument.

SUBROUTI NE HLEMNE( | HM | ROW | COL, LI SNEG, *ERRCR )

Is element of real H-matrix negative?

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrixReal.
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| ROV | NTEGER. Row index of the selected element of the H-matrix | HM (positive
number).

| COL | NTEGER. Column index of the selected element of the H-matrix | HM (positive
number).

Output Parameters

LI SNEG LOG CAL.
LI SNEG=. TRUE. —the (| ROW | COL) -th element of the H-matrix | HMis
negative;
LI SNEG=. FALSE. —the (| ROW | CCOL) -th element of the H-matrix | HMis
zero or positive.

ERROR Alternate return argument.

SUBROUTI NE HGNAME( | H, NAVE, *ERRCR )

Returns class name of H-object

Input Parameters

I H | NTEGER. Handle to H-object.

Output Parameters

NAVE CHATACTER* . Concrete class name of the H-object | H.
ERROR Alternate return argument.
Remarks

If the length of string NANME is less than required then the string is padded with asterisks.

SUBROUTI NE HGFLTS( | H NEXP, NWVNT, *ERROR )

Returns sizes of exponent and mantissa fields

Input Parameters
I H | NTEGER. Handle to H-object composed of floating-point numbers.

Output Parameters

NEXP | NTEGER. Exponent length in 32-bit words (non-negative number). NEXP=0
stands for single or double precision IEEE floating-point data.

NIVNT | NTEGER. Mantissa length in 32-bit words (positive number). If NEXP=0 then
NVNT=1 and 2 imply single and double precision IEEE floating-point data
respectively.

ERROR Alternate return argument.
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Remarks

The input H-object | H should be descendant of AFFloat, AUVector, AUMatrix,
AUCompleteLU, or AUHessenberg.

SUBROUTI NE HGVDI M| | HV, NDI M *ERROR )

Returns dimension of H-vector

Input Parameters

| HV | NTEGER. Handle to H-vector AVector.

Output Parameters

NDI M | NTEGER. Dimension of the H-vector | HV (non-negative number).

ERROR Alternate return argument.

SUBROUTI NE HGVDI M( | HM, NROW NCOL, *ERRCR )

Returns dimensions of (transformed) H-matrix

Input Parameters
| HM | NTEGER. Handle to (transformed) H-matrix.

Output Parameters

NROW | NTEGER. Number of rows of the H-matrix | HM (non-negative number).
NCOL | NTEGER. Number of columns of the H-matrix | HM (non-negative number).
ERROR Alternate return argument.

Remarks

The input Hmatrix | HVishould be descendant of AMatrix, ACompleteLU, or AHessenberg.

4.7. Creating Empty H-Objects

SUBROUTI NE HWN( NEXP, NWNT, LISREAL, |HN, *ERRCR)

Creates new floating-point H-number

Input Parameters

NEXP | NTEGER. Exponent length in 32-bit words (non-negative number). NEXP=0
stands for single or double precision IEEE floating-point data.
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NMNT | NTEGER. Mantissa length in 32-bit words (positive number). If NEXP=0 then
NVNT=1 and 2 imply single and double precision IEEE floating-point data
respectively.

LI SREAL LOd CAL.
Ll SREAL=. TRUE. - Create real H-number AFRealFloat;

LI SREAL=. FALSE. — Create complex H-number AFComplexFloat.

Output Parameters

| HN | NTEGER. Handle to the created H-number AFFloat.
ERROR Alternate return argument.
Remarks

The new H-number is initialized with zero.

SUBROUTI NE HW/( NEXP, NWNT, LISREAL, NDIM |HV, *ERROR )

Creates new H-vector

Input Parameters

NEXP | NTEGER. Exponent length in 32-bit words (non-negative number). NEXP=0
stands for single or double precision IEEE floating-point data.

NMNT | NTEGER. Mantissa length in 32-bit words (positive number). If NEXP=0 then
NVNT=1 and 2 imply single and double precision IEEE floating-point data
respectively.

LI SREAL LOG CAL.
LI SREAL=. TRUE. - Create real H-vector AUVectorReal;
LI SREAL=. FALSE. — Create complex H-vector AUVectorCompl.
NDI M | NTEGER. Dimension of the new H-vector | HV (non-negative number).

Output Parameters

| HV | NTEGER. Handle to the created H-vector AUVector.
ERROR Alternate return argument.
Remarks

The rew H-vector | HV consists of NDI M real or complex floating-point elements with
exponent size NEXP and mantissa size NIVNT. All the elements are initialized with zeros.
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SUBROUTI NE HWM( NEXP, NWNT, LISREAL, NROW NCCL, |HV *ERRCR )

Creates new general H-matrix

Input Parameters

NEXP | NTEGER. Exponent length in 32-bit words (non-negative number). NEXP=0
stands for single or double precision IEEE floating-point data.

NMNT | NTEGER. Mantissa length in 32-bit words (positive number). If NEXP=0 then
NVNT=1 and 2 imply single and double precision IEEE floating-point data
respectively.

LI SREAL LOG CAL.
Ll SREAL=. TRUE. - Create real H-matrix AUMatrixReal;

LI SREAL=. FALSE. — Create complex H- matrix AUMatrixCompl.

NROW | NTEGER. Number of rows of the new H-matrix | HM(non-negative number).
NCOL | NTEGER. Number of columns of the new H-matrix | HM (non-negative
number).

Output Parameters

| HM | NTEGER. Handle to the created H-matrix AUMatrixSqGen or AUMatrixRect
depending on NROWand NCOL.

ERROR Alternate return argument.

Remarks

The new general H-matrix has the full storage format and consists of NROVY¥ NCCL real or
complex floating-point elements with exponent size NEXP and mantissa size NIVNT. All the
elements are initialized with zeros. In cases NROVENCOL and NROAM NCOL  H-matrices
AUMatrixSqGen and AUMatrixRect respectively are created

SUBROUTI NE HWWS( NEXP, NWNT, LISREAL, NDIM |SIGN | HVB,
* ERROR )

Creates new Hermitian H-matrix

Input Parameters

NEXP | NTEGER. Exponent length in 32-bit words (non-negative number). NEXP=0
stands for single or double precision IEEE floating-point data.

NMNT | NTEGER. Mantissa length in 32-bit words (positive number). If NEXP=0 then
NVNT=1 and 2 imply single and double precision IEEE floating-point data
respectively.

L1 SREAL LOGE CAL.
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Ll SREAL=. TRUE. - Create real H-matrix AUMatrixReal;
LI SREAL=. FALSE. — Create complex H- matrix AUMatrixCompl.

NDI M | NTEGER. Dimension of the new H-matrix | HVIS (non-negative number).

| SI GN | NTEGER. Signature of the new matrix. | HVIS
| SI G\N=1 - Create positive-definite Hermitian matrix;
| SI G\N=0 - Create indefinite Hermitian matrix.

Output Parameters

| HVS | NTEGER. Handle to the created H-matrix AUMatrixSqHerm.
ERROR Alternate return argument.
Remarks

The new Hermitian H-matrix has the packed storage format and consists of
NROWF (NROW+1) / 2 real or complex floating-point elements with exponent size NEXP and
mantissa size NVNT. All the elements are initialized with zeros.

4.8. Creating H-Objects with Initialization

4.8.1. Initialization with Text String

SUBROUTI NE HANXT( STR, | HNX, *ERRCR )

Creates new H-number initialized with text string

Input Parameters
STR CHARACTER*. Initializing text string.

Output Parameters

| HNX | NTEGER. Handle to the created H-number ANumber.
ERROR Alternate return argument.
Remarks

For the permissible formats of the input string STR, and rules of automatic selection of the
number kind please refer to section 3.4.2.
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4.8.2. Initialization with Fortran Data

SUBROUTI NE HAXF( | NUVER, | DENOV | HX *ERROR )

Creates new exact H-number initialized with quotient of two integers

Input Parameters
| NUVER | NTEGER. Numerator.
| DENOM | NTEGER. Denominator.

Output Parameters

I HX | NTEGER. Handle to the created Hnumber AFRealExact or CInfUnsigned.
ERROR Alternate return argument.
Remarks

HAXF defines the type of new H-number depending on actual value of the quotient
| NUVER/ | DENOM If | NUVER! 0 and | DENOVEO then H-number CinfUnsigned is generated. If

| DENOM 0 appears to be an exact factor of | NUVER, then HAXF creates H-number AFinteger
and initializes it with the quotient, otherwise an appropriate H-number CFRational is created.

SUBROUTI NE HANF( FTYPE, FVAR, |HN, *ERROR )

Creates new floating-point H-number initialized with Fortran variable

Input Parameters
FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR Fortran initializing variable.

Output Parameters

| HN | NTEGER. Handle to the created H-number AFFloat.
ERROR Alternate return argument.
Remarks
If FVAR is an | NTEGER variable with type descriptor FTYPE=' | * then HANF converts it

to DOUBLE PRECI SI ON and creates H-number CFReal8.
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SUBROUTI NE HAVF( FTYPE, FARRAY, NDIM |HVY, *ERROR )

Creates new H-vector initialized with Fortran array

Input Parameters
FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see 4.2).

FARRAY Fortran initializing array. Size of the array should be equal to or greater than
dimension NDI M of new H-vector | HV.

NDI M | NTEGER. Dimension of the new H-vector | HV (positive number).

Output Parameters

| HV | NTEGER. Handle to the created H-vector AUVector.
ERROR Alternate return argument.
Remarks

If FARRAY is an | NTEGER array with type descriptor FTYPE=* | then HAVF converts all
its elements to DOUBLE PRECI SI ON and creates H-vector CUVectorReal8.

SUBROUTI NE HAMF( FTYPE, FARRAY, NROW NCOL, |HV, *ERROR )

Creates new general H-matrix initialized with Fortran array

Input Parameters
FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see 4.2).

FARRAY Fortran initializing array. Size of the array should be equal to or greater than total
number of elements NROA* NCCL of new H-matrix | HV

NROW | NTEGER. Number of rows of the new H-matrix | HVI(positive number).
NCOL | NTEGER. Number of columns of the new H-matrix | HV(positive number).

Output Parameters

| HM | NTEGER. Handle to the created H-matrix AUMatrixSqGen or AUMatrixRect.
ERROR Alternate return argument.
Remarks

The rew general H-matrix has full storage format and consists of NRO/ NCOL real or

complex floating-point elements. In cases NROAENCOL and NROWM NCCOL H-matrices

AUMatrixSqGen and AUMatrixRect respectively are created. If FARRAY is an | NTEGER array
with type descriptor FTYPE="1' then HAMF converts all its elements to DOUBLE

PREC! SI ON and creates H-matrix AUMatrixSqGenReal8 or AUMatrixRectReal8.
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SUBROUTI NE HAMBF( FTYPE, FARRAY, NDIM |SIGN LISPACK, | HVB,
* ERROR )

Creates new Hermitian H-matrix initialized with Fortran array

Input Parameters
FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see 4.2).

FARRAY Fortran initializing array. Size of the array should be equal to or greater than total
number of elements of new H-matrix |HMS, ie. ND M*2 or
NDI M+ ( NDI M#+1) / 2 depending on the input storage format LI SPACK.

NDI M | NTEGER. Dimension of the new H-matrix | HVS (positive number).

| SI GN | NTEGER. Signature of new matrix. | HVES:
| SI G\N=1 - Create positive-definite Hermitian matrix;
| SI GN=0 - Create indefinite Hermitian matrix.

LI SPACK LOG CAL. Specifies storage format for the source matrix:
LI SPACK=. TRUE. - FARRAY contains the upper triangle of a source
Hermitian matrix stored in the packed format with total number of elements
NDI M+ ( NDI M+1) / 2.
LI SPACK=. FALSE. — FARRAY contains a source Hermitian matrix stored in
the full format with total number of elements NDI M** 2.

Output Parameters

| HVS | NTEGER. Handle to the created Hmatrix AUMatrixSqHerm.
ERROR Alternate return argument.
Remarks

If FARRAY is an | NTEGER array with type descriptor FTYPE=* 1’ then HAMSF converts
all its elements to DOUBLE PRECI SI ON and creates H-matrix CUMatrixSqHermReal8.

4.8.3. Initialization with H-Object

SUBROUTI NE HAXN( | RHN, | LHX, *ERRCR )

Creates new exact H-number initialized with floating-point H-number

Input Parameters
| RHN | NTEGER. Handle to the source H-number AFFloat.
Output Parameters

| LHX | NTEGER. Handle to the created H-number AFRealExact.
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ERROR Alternate return argument.

Remarks

One should realize that converting H-numbers AFFloat to AFRealExact typically produces
very long numbers that take the amount of memory approximately equal to the sum of the
mantissa’s bit size and exponent’s binary value.

4.9. Updating Floating-Point H-Objects
4.9.1. Text Input

SUBROUTI NE HUNT( STR, |HN, *ERRCR )

Updates floating-point H-number with text string

Input Parameters

STR CHARACTER* . Source text string.

Input/Output Parameters

| HN | NTEGER. Handle to the destination H-number AFFloat .
Output Parameters

ERROR Alternate return argument.

Remarks

For the permissible formats of the source string STR, please refer to section 3.4.2.

SUBROUTI NE HUEVT( STR | NDEX, |HV, *ERROR )

Updates element of H-vector with text string

Input Parameters

STR CHARACTER* . Source text string.

| NDEX | NTEGER. Index of the selected element of the H-vector | HV (positive number).
Input/Output Parameters

| HV | NTEGER. Handle to the destination H-vector AUVector.

Output Parameters

ERROR Alternate return argument.



Remarks

For the permissible formats of the source string STR, please refer to section 3.4.2.

SUBROUTI NE HUEMI( STR, |TRON [ COL, |IHVM *ERRCR )

Updates element of H-matrix with text string

Input Parameters

STR CHARACTER* . Input string.

| ROW | NTEGER. Row index of the selected element of the H-matrix | HM (positive
number).

| COL | NTEGER. Column index of the selected element of the H-matrix | HM (positive
number).

Input/Output Parameters

| HM | NTEGER. Handle to the destination H-matrix AUMatrix.
Output Parameters

ERROR Alternate return argument.

Remarks

For the permissible formats of the source string STR, please refer to section 3.4.2.

4.9.2. Import of Fortran Data

SUBROUTI NE HUNF( FTYPE, FVAR, |HN, *ERROR )

Updates floating-point H-number with Fortran variable

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR Source Fortran variable.

Input/Output Parameters

| HN | NTEGER. Handle to the destination H-number AFFloat.

Output Parameters

ERROR Alternate return argument.
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SUBROUTI NE HURNF( FTYPE, FVAR | HN *ERRCR )

Updates real part of complex floating-point H-number with Fortran variable

Input Parameters
FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR Source Fortran variable.
Input/Output Parameters
| HN | NTEGER. Handle to the destination H-number AFComplexFloat.
Output Parameters
ERROR Alternate return argument.
Remarks
Permissible types of the variable FVAR are | NTEGER ( FTYPE='1"), REAL (='S"),

and DOUBLE PRECI SI ON (=D’ ). Input values FTYPE="C and ‘ Z' are treated as illegal
ones.

SUBROUTI NE HUI NF( FTYPE, FVAR | HN *ERRCR )

Updates imaginary part of complex floating-point H-number with Fortran variable

Input Parameters
FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR Source Fortran variable.
Input/Output Parameters
| HN | NTEGER. Handle to the destination H-number AFComplexFloat.
Output Parameters
ERROR Alternate return argument.
Remarks
Permissible types of the variable FVAR are | NTEGER ( FTYPE='1"), REAL (='S"),

and DOUBLE PRECI SI ON(=' D ). Input values FTYPE=" C and‘ Z are treated as illegal
ones.
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SUBROUTI NE HUEVF( FTYPE, FVAR | NDEX, |HV, *ERROR )

Updates element of H-vector with Fortran variable

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR Source Fortran variable.
| NDEX | NTEGER. Index of the selected element of the H-vector | HV (positive number).

Input/Output Parameters
| HV | NTEGER. Handle to the destination H-vector AUVector.
Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUREVF( FTYPE, FVAR, |NDEX, |HV, *ERRCR )

Updates real part of element of complex H-vector with Fortran variable

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR Source Fortran variable.
| NDEX | NTEGER. Index of the selected element of the H-vector | HV (positive number).

Input/Output Parameters
| HV | NTEGER. Handle to the destination H-vector AUVectorCompl.
Output Parameters

ERROR Alternate return argument.

Remarks

Permissible types of the variable FVAR are | NTEGER ( FTYPE='1"), REAL (='S"),
and DOUBLE PRECI SION(="D ). Input values FTYPE=" C and ‘' Z' are treated as illegal
ones.
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SUBROUTI NE HU EVF( FTYPE, FVAR, |NDEX, |HV, *ERRCR )

Updates imaginary part of element of complex H-vector with Fortran variable.

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR Source Fortran variable.
| NDEX | NTEGER. Index of the selected element of the H-vector | HV (positive number).

Input/Output Parameters
| HV | NTEGER. Handle to the destination H-vector AUVectorCompl.
Output Parameters
ERROR Alternate return argument.
Remarks
Permissible types of the variable FVAR are | NTEGER ( FTYPE='1"), REAL (='S"),

and DOUBLE PRECI SI ON(=' D ) . Input values FTYPE=' C and‘' Z are treated as illegal
ones.

SUBROUTI NE HUVF( FTYPE, FARRAY, NDI M |HV, *ERROR )

Updates H-vector with Fortran array

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see section 4.2).

FARRAY Source Fortran array. Size of the array should be equal to or greater than
dimension NDI M of the H-vector | HV.

NDI M | NTEGER. Dimension of the H-vector | HV (positive number).
Input/Output Parameters

| HV | NTEGER. Handle to the destination H-vector AUVector.
Output Parameters

ERROR Alternate return argument.
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SUBROUTI NE HUEMF( FTYPE, FVAR |ROWN |COL, |HV *ERRCR)

Updates element of H-matrix with Fortran variable

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).

FVAR Source Fortran variable.

| ROW | NTEGER. Row index of the selected element of the H-matrix | HM (positive
number).

| COL I NTEG)ER Column index of the selected element of the H-matrix | HM (positive
number).

Input/Output Parameters
| HM | NTEGER. Handle to the destination H-matrix AUMatrix.
Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUREMF( FTYPE, FVAR, I ROW |1COL, |IHVI *ERROR )

Updates real part of element of complex H-matrix with Fortran variable

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).

FVAR Source Fortran variable.

| ROW | NTEGER. Row index of the selected element of the H-matrix | HM (positive
number).

| COL I NTEGI)ER Column index of the selected element of the H-matrix | HM (positive
number).

Input/Output Parameters
| HM | NTEGER. Handle to the destination H-matrix AUMatrixCompl.
Output Parameters

ERROR Alternate return argument.
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Remarks

Permissible types of the variable FVAR are | NTEGER ( FTYPE='1"), REAL (='S"),
and DOUBLE PRECI SION(=' D ). Input values FTYPE="C and' Z are treated as illegal
ones.

SUBROUTI NE HU EMF( FTYPE, FVAR, IROW 1CO., IHV, *ERROR )

Updates imaginary part of element of complex H-matrix with Fortran variable

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).

FVAR Source Fortran variable.

| ROW | NTEGER. Row index of the selected element of the H-matrix | HM (positive
number).

| COL | NTEGER. Column index of the selected element of the H-matrix | HMVI (positive
number).

Input/Output Parameters
| HM | NTEGER. Handle to the destination H-matrix AUMatrixCompl.
Output Parameters
ERROR Alternate return argument.
Remarks
Permissible types of the variable FVAR are | NTEGER ( FTYPE='1"), REAL (='S"),

and DOUBLE PRECI SI ON(=' D ). Input values FTYPE="C and' Z are treated as illegal
ones.

SUBROUTI NE HUVRF( FTYPE, FARRAY, |RON NCOL, |HM *ERROR )

Updates H-matrix row with Fortran array

Input Parameters
FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see section 4.2).

FARRAY Source Fortran array. Size of the array should be equal to or greater than
number of columns NCCL of the H-matrix | HM

| ROW | NTEGER. Index of the selected row of the H-matrix | HM (positive number).

NCCL | NTEGER. Number of columns of the H-matrix | HM (positive number).
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Input/Output Parameters

| HM | NTEGER. Handle to the destination H-matrix AUMatrix.
Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUMCF( FTYPE, FARRAY, |1COL, NROW | HM *ERROR )

Updates H-matrix column with Fortran array

Input Parameters
FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see section 4.2).

FARRAY Source Fortran array. Size of the array should be equal to or greater than
number of rows NROWof the H-matrix | HVL

| COL | NTEGER. Index of the selected column in the H-matrix | HM (positive number).
NROW | NTEGER. Number of rows of the H-matrix | HM (positive number).
Input/Output Parameters

| HM | NTEGER. Handle to the destination H-matrix AUMatrix.

Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUMF( FTYPE, FARRAY, NROW NCOL, |HV, *ERROR )

Updates general H-matrix with Fortran array

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see section 4.2).

FARRAY Source Fortran array. Size of the array should be equal to or greater than total
number of elements NROW NCCL of the H-matrix | HM

NROW | NTEGER. Number of rows of the H-matrix | HM (positive number).

NCOL | NTEGER. Number of columns of the H-matrix | HM (positive number).
Input/Output Parameters

| HM | NTEGER. Handle the destination H-matrix AUMatrixSqGen or AUMatrixRect.
Output Parameters

ERROR Alternate return argument.



71

SUBROUTI NE HUMSKF( FTYPE, FARRAY, NDI M LI SPACK, |HV5 *ERRCR )

Updates Hermitian H-matrix with Fortran array

Input Parameters
FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see section 4.2).
FARRAY Source Fortran array.
NDI M | NTEGER. Dimension of the H-matrix | HVIS (positive number).
LI SPACK LOG CAL. Specifies storage format for the source matrix:
LI SPACK=. TRUE. - FARRAY contains the upper triangle of a source

Hermitian matrix stored in the packed format with total number of elements
NDI M+ ( NDI M+1) / 2.

Ll SPACK=. FALSE. — FARRAY contains a source Hermitian matrix stored in
the full format with total number of elements NDI Mr* 2.

Input/Output Parameters
| HVS | NTEGER. Handle to the destination H-matrix AUMatrixSgHerm.
Output Parameters

ERROR Alternate return argument.

4.9.3. Updating with Another H-Object

SUBROUTI NE HUHH( | RH, | LH, *ERROR)
Updates floating-point H-object with finite H-object

Input Parameters
| RH | NTEGER. Handle to the source finite H-object AFinite, AVector, or AMatrix.
Input/Output Parameters
| LH | NTEGER. Handle to the destination floating-point H-object.
Output Parameters
ERROR Alternate return argument.
Remarks
H-objects | LH and | RH must belong to the same generic kind, i.e. be descendants of the
same parent class ANumber, AVector, or AMatrix. Senseless cross-kind update operations

result in run time error #102 “| LLEGAL TYPE OF OPERAND". If | LH and | RH are
associated with H-objects AVector, or AMatrix then their respective dimensions should coincide.
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SUBROUTI NE  HURNN(

[ RHN, ILHN, *ERRCR )

Updates real part of complex H-number with finite real H-number

Input Parameters

| RHN | NTEGER.

Handle to the source H-number AFReal.

Input/Output Parameters

| LHN | NTEGER.

Output Parameters

Handle to the destination H-number AFComplexFloat.

ERROR Alternate return argument.

SUBROUTI NE HUI NIN\(

IRHN, ILHN, *ERROR )

Updates imaginary part of complex H-number with finite real H-number

Input Parameters

I RHN | NTEGER.

Handle to the source H-number AFReal.

Input/Output Parameters

| LHN | NTEGER.

Output Parameters

Handle to the destination H-number AFComplexFloat.

ERROR Alternate return argument.

SUBROUTI NE HUEVN(

I RHN, I NDEX, |LHV, *ERRCR)

Updates element of H-vector with finite H-number

Input Parameters

| RHN | NTEGER.
| NDEX | NTEGER.
number).

Handle the source H-number AFinite.

Index of the selected element of the H-vector | LHV (positive

Input/Output Parameters

| LHV | NTEGER.

Output Parameters

Handle to the destination H-vector AUVector.

ERROR Alternate return argument.
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SUBROUTI NE HUREVN( | RHN, | NDEX, |LHV, *ERROR )

Updates real part of element of complex H-vector with finite real H-number

Input Parameters

| RHN | NTEGER. Handle to the source H-number AFReal.
| NDEX | NTEGER. Index of the selected element of the H-vector | LHV (positive
number).

Input/Output Parameters
| LHV | NTEGER. Handle to the destination H-vector AUVectorCompl.
Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HU EVN( | RHN, | NDEX, |LHV, *ERROR )

Updates imaginary part of element of complex H-vector with finite real H-number

Input Parameters

| RHN | NTEGER. Handle to the source H-number AFReal.
| NDEX | NTEGER. Index of the selected element of the H-vector | LHV (positive
number).

Input/Output Parameters
| LHV | NTEGER. Handle to the destination H-vector AUVectorCompl.
Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUEMN( | HN T ROWN | COL, |HV *ERROR )

Updates element of H-matrix with finite H-number

Input Parameters

| HN | NTEGER. Handle to the source H-number AFinite.

| ROW | NTEGER. Row ndex of the selected element of the H-matrix | HM (positive
number).

| COL | NTEGER. Column index of the selected element of the H-matrix | HMV (positive

number).
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Input/Output Parameters

| HM | NTEGER. Handle to the destination H-matrix AUMatrix.
Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUREMN( | HN, TROW |CO.,, |IHVM *ERROR )

Updates real part of element of complex H-matrix with finite real H-number

Input Parameters

| HN | NTEGER. Handle to the source H-number AFReal.

| ROV | NTEGER. Row index of the selected element of the H-matrix | HM (positive
number).

| COL | NTEGER. Column index of the selected element of the H-matrix | HMV (positive
number).

Input/Output Parameters
| HM | NTEGER. Handle to the destination H-matrix AUMatrixCompl.
Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUI EMN( | HN, TROW 1COL, |IHVM *ERROR )

Updates imaginary part of element of complex H-matrix with finite real H-number

Input Parameters

| HN | NTEGER. Handle to the source H-number AFReal.

| ROW | NTEGER. Row index of the selected element of the H-matrix | HM (positive
number).

| COL | NTEGER. Column index of the selected element of the H-matrix | HMV (positive
number).

Input/Output Parameters
| HM | NTEGER. Handle to the destination H-matrix AUMatrixCompl.
Output Parameters

ERROR Alternate return argument.
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SUBROUTI NE HUMRV( | HV, I RON |HVI *ERRCR )

Updates H-matrix row with H-vector

Input Parameters

| HV | NTEGER. Handle to the source H-vector AUVector.

| ROW | NTEGER. Index of the selected row of the H-matrix | HM (positive number).
Input/Output Parameters

| HM | NTEGER. Handle to the destination H-matrix AUMatrix.

Output Parameters

ERROR Alternate return argument.

Remarks

Dimension of the H-vector | HV should coincide with the number of columns of the H-matrix
| HM

SUBROUTI NE HUMCV( | Hv, 1COL, IHV, *ERRCR )

Updates H-matrix column with H-vector

Input Parameters

| HV | NTEGER. Handle to the source H-vector AUVector.

| COL | NTEGER. Index of the selected column of the H-matrix | HM (positive number).
Input/Output Parameters

| HM | NTEGER. Handle to the destination H-matrix AUMatrix.

Output Parameters

ERROR Alternate return argument.

Remarks

Dimension of the Hvector | HV should coincide with the number of rows of the Hmatrix
| HM
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4.10. Relational Operations

SUBROUTI NE HLEQL( ILH I RH LRES, *ERRCR )

Logical . EQ. for generic H-objects

Input Parameters

I LH | NTEGER. Handle to the left operand ANumber, AVector, or AMatrix.
| RH | NTEGER. Handle to the right operand ANumber, AVector, or AMatrix.
Output Parameters

LRES LOG CAL. Result of the operation.
LRES=. TRUE. - the H-object| LHis equal to H-object| RH.
LRES=. FALSE. - the H-object| LHis not equal to H-object | RH.

ERROR Alternate return argument.
Remarks
Operands | LH and | RH must belong to the same generic kind, i.e. be descendants of the

same parent class ANumber, AVector, or AMatrix. Senseless cross-kind comparisons result in
run time error #102 “| LLEGAL TYPE OF OPERAND'.

SUBROUTI NE HLGNN( | LHN, I RHN, LRES, *ERRCR )

Logical . GT. for real H-numbers

Input Parameters

| LHN | NTEGER. Handle to the left operand AFReal.
| RHN | NTEGER. Handle to the right operand AFReal.
Output Parameters

LRES LOG CAL. Result of the operation.
LRES=. TRUE. - the H-number | LHN s greater than H-number | RHN.
LRES=. FALSE. -the H-number | LHN is less than or equal to H-number
| RHN.

ERROR Alternate return argument.



7

SUBROUTI NE HLLNN( | LHN, | RHN, LRES, *ERRCR )

Logical . LT. for real H-numbers

Input Parameters
| LHN | NTEGER. Handle to the left operand AFReal.

| RHN | NTEGER. Handle to the right operand AFReal.
Output Parameters

LRES LOQ CAL. Result of the operation.
LRES=. TRUE. - the H-number | LHN is less than H-number | RHN.
LRES=. FALSE. - the H-number | LHN is greater than or equal to H-number
| RHN.

ERROR Alternate return argument.

4.11. Finding Maximum and Minimum Elements

SUBROUTI NE HGVE | HV, | NDEX, *ERRCR )

Finds index of the greatest element of real H-vector

Input Parameters

| HV | NTEGER. Handle to H-vector AUVectorReal.

Output Parameters

| NDEX | NTEGER. Index of the greatest element of the H-vector | HV.

ERROR Alternate return argument.

SUBROUTI NE HGVL( | HV, | NDEX, *ERRCR )

Finds index of the lowest element of real H-vector

Input Parameters

| HV | NTEGER. Handle to H-vector AUVectorReal.

Output Parameters

| NDEX | NTEGER. Index of the lowest element of the H-vector | HV.

ERROR Alternate return argument.
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SUBROUTI NE HGVGL( | HV, | NDEX, *ERROCR )

Finds index of the greatest in octahedral norm element of H-vector

Input Parameters
| HV | NTEGER. Handle to H-vector AUVector.

Output Parameters

| NDEX | NTEGER. Index of the greatest in octahedral norm element of the H-vector
| HV.

ERROR Alternate return argument.

Remarks

The octahedral norm of a number z is | z] for real z, and |Re(z) |+ Im(z)] for complex z.

SUBROUTI NE HGVL1( | HV, | NDEX, *ERROCR )

Finds index of the lowest in octahedral norm element of H-vector

Input Parameters
| HV | NTEGER. Handle to H-vector AUVector.

Output Parameters

| NDEX | NTEGER. Index of the lowestin octahedral norm element of the H-vector | HV.
ERROR Alternate return argument.
Remarks

The octahedral norm of a number z is | z] for real z, and |Re(z) |+ Im(z)] for complex z.

SUBROUTI NE HGVG2( | HV, | NDEX, *ERROR )

Finds ndex of the greatest in Euclidian norm element of H-vector

Input Parameters

| HV | NTEGER. Handle to H-vector AUVector.

Output Parameters

| NDEX | NTEGER. Index of the greatestin Euclidian norm element of the Hvector | HV.

ERROR Alternate return argument.
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Remarks

The Euclidian norm of a number z is |z for real z, and (Re(z)2+Im(z)2)1/2 for complex z.

SUBROUTI NE HGVL2( | HV, | NDEX, *ERROR )

Finds index of the lowest in Euclidian norm element of H-vector

Input Parameters
| HV | NTEGER. Handle to H-vector AUVector.

Output Parameters

| NDEX | NTEGER. Index of the lowest in Euclidian norm element of the H-vector | HV.
ERROR Alternate return argument.
Remarks

The Euclidian norm of a number z is | z|] for real z, and (Re(z)2+Im(z)2)1/2 for complex z.

SUBROUTI NE HGVRE | HV] TROWN | COL, *ERROR )

Finds column index of the greatest element in row of real H-matrix

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrixReal.

| ROV | NTEGER. Index of the selected row of the H-matrix | HM (positive number).
Output Parameters

| COL | NTEGER. Column index of the greatest element in the | ROWth row.

ERROR Alternate return argument.

SUBROUTI NE HGVRL( | HV TROWN 1 COL, *ERROR )

Finds column index of the lowest element in row of real H-matrix

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrixReal.

| ROW | NTEGER. Index of the selected row of the Hmatrix | HM (positive number).
Output Parameters

| COL | NTEGER. Column index of the lowest element in the | ROWth row.

ERROR Alternate return argument.
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SUBROUTI NE HGVRGL( |HVM | ROW | COL, *ERRCR )

Finds column index of the greatest in octahedral norm element in H-matrix row

Input Parameters
| HM | NTEGER. Handle to H-matrix AMatrix.
| ROW | NTEGER. Index of the selected row of the Hmatrix | HM (positive number).

Output Parameters

| COL | NTEGER. Column index of the greatest in octahedral norm element in the
| RO\th row.

ERROR Alternate return argument.

Remarks

The octahedral norm of a number z is |z| for real z, and |Re(z) | +]Im(z)] for complex z.

SUBROUTI NE HGVRL1( IHV, | ROW [ COL, *ERRCR )

Finds column index of the lowest in octahedral norm element in H-matrix row

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.

| ROV | NTEGER. Index of the selected row of the Hmatrix | HM (positive number).

Output Parameters

| COL | NTEGER. Column index of the lowest in octahedral norm element in the | ROW
th row.

ERROR Alternate return argument.

Remarks

The octahedral norm of a number z is | z] for real z, and |Re(z)|+]Im(z)] for complex z.

SUBROUTI NE HGVR&2( |THV, | ROW | COL, *ERRCR )

Finds column index of the greatest in Euclidian norm element in H-matrix row

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.

| ROW | NTEGER. Index of the selected row of the Hmatrix | HM (positive number).
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Output Parameters

| COL | NTEGER. Column index of the greatest in Euclidian norm element in the
| ROWth row.

ERROR Alternate return argument.

Remarks

The Euclidian norm of a number z is | z|] for real z, and (Re(z)2+Im(z)2)1/2 for complex z.

SUBROUTI NE HGWRL2( |HV, | ROW [ COL, *ERRCR )

Finds column index of the lowest in Euclidian norm element in H-matrix row

Input Parameters
| HM | NTEGER. Handle to H-matrix AUMatrix.
| ROV | NTEGER. Index of the selected row of the Hmatrix | HM (positive number).

Output Parameters

| COL | NTEGER. Column index of the lowest in Euclidian norm element in the | ROW
th row.

ERROR Alternate return argument.

Remarks

The Euclidian norm of a number z is | z|] for real z, and (Re(z)2+Im(z)2)1/2 for complex z.

SUBROUTI NE HGMCE |THV 1COL, | ROW *ERROR )

Finds row index of the greatest element in column of real H-matrix

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrixReal.

| COL | NTEGER. Index of the selected column of the H-matrix | HM (positive number).
Output Parameters

| ROW | NTEGER. Row index of the greatest element in the | COL-th column.

ERROR Alternate return argument.
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SUBROUTI NE HGMCL( |THVM 1COL, | ROW *ERROR )

Finds rowindex of the lowest element in column of real H-matrix

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrixReal.

| COL | NTEGER. Index of the selected column of the H-matrix | HM (positive number).
Output Parameters

| ROV | NTEGER. Row index of the lowest element in the column | COL.

ERROR Alternate return argument.

SUBROUTI NE HGMCGL( |HV, | COL, | ROW *ERRCR )

Finds row index of the greatest in octahedral norm element in H-matrix column

Input Parameters
| HM | NTEGER. Handle to H-matrix AMatrix.
| COL | NTEGER. Index of the selected column of the H-matrix | HM (positive number).

Output Parameters

| ROW | NTEGER. Row index of the greatest in octahedral norm element in the | COL-
th column.

ERROR Alternate return argument.

Remarks

The octahedral norm of a number z is |z] for real z, and |Re(z) | +]Im(z)] for complex z.

SUBROUTI NE HGMCL1( IHM | COL, | ROW *ERRCOR )

Finds row index of the lowest in octahedral norm element in H-matrix column

Input Parameters

| HM | NTEGER. Handle to H-matrix AMatrix.
| COL | NTEGER. Index of the selected column of the H-matrix | HM (positive number).
Output Parameters

| ROW | NTEGER. Row index of the lowest in octahedral norm element in the | COL-th
column.
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ERROR Alternate return argument.

Remarks

The octahedral norm of a number z is |z| for real z, and |Re(z) | +]Im(z)] for complex z.

SUBROUTI NE HGMC&2( |HV, | COL, | ROW *ERRCR )

Finds row index of the greatest in Euclidian norm element in H-matrix column

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.
| COL | NTEGER. Index of the selected column of the H-matrix | HM (positive number).

Output Parameters

| ROV | NTEGER. Row index of the greatest in Euclidian norm element in the | COL-th
column.

ERROR Alternate return argument.

Remarks

The Euclidian norm of a number z is | z| for real z, and (Re(z)2+Im(z)2)1/2 for complex z.

SUBROUTI NE HGVCL2( |HV, | COL, | ROW *ERRCR )

Finds row index of the lowest in Euclidian norm element in H-matrix column

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.
| COL | NTEGER. Index of the selected column of the H-matrix | HM (positive number).

Output Parameters

| ROW | NTEGER. Row index of the lowest in Euclidian norm element in the | COL-th
column.

ERROR Alternate return argument.

Remarks

The Euclidian norm of a number z is |z| for real z, and (Re(z)2+Im(z)2)1/2 for complex z.



SUBROUTI NE HGME | HV, | ROW [COL, *ERRCR )

Finds indices of the greatest element of real H-matrix

Input Parameters
| HM | NTEGER. Handle to H-matrix AUMatrixReal.

Output Parameters

| ROV | NTEGER. Row index of the greatest element of the Hmatrix | HM
| COL | NTEGER. Columnindex of the greatest element of the H-matrix | HM
ERROR Alternate return argument.

SUBROUTI NE HGML( I HV, T ROW 1COL, *ERRCR )

Finds indices of the lowest element of real H-matrix

Input Parameters
| HM | NTEGER. Handle to H-matrix AUMatrixReal.

Output Parameters

| ROW | NTEGER. Row index of the lowest element of the Hmatrix | HM
| COL | NTEGER. Columnindex of the lowest element of the H-matrix | HM
ERROR Alternate return argument.

SUBROUTI NE HGMGL( THM T RON | COL, *ERROR )

Finds indices of the greatest in octahedral norm element of H-matrix

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.

Output Parameters

| ROW | NTEGER. Row index of the greatest in octahedral norm element of the H
matrix | HV

| COL | NTEGER. Column index of the greatest in octahedral norm element of the H
matrix | HM

ERROR Alternate return argument.
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Remarks

The octahedral norm of a number z is | z] for real z, and |Re(z) |+ Im(z)] for complex z.

SUBROUTI NE HGWL1( ITHV TROWN | COL, *ERROR )

Finds indices of the lowest in octahedral norm element of H-matrix

Input Parameters
| HM | NTEGER. Handle to H-matrix AUMatrix.

Output Parameters

| ROW | NTEGER. Row index of the lowest in octahedral norm element of the H-matrix
| HM

| CQL | NTEGER. Column index of the lowest in octahedral norm element of the H-
matrix | HM

ERROR Alternate return argument.

Remarks

The octahedral norm of a number z is |z| for real z, and |Re(z) | +]Im(z)] for complex z.

SUBROUTI NE HGM&Z( |THM | RON | COL, *ERROR )

Finds indices of the greatest in Euclidian norm element of H-matrix

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.

Output Parameters

| ROW | NTEGER. Row index of the greatest in Euclidian norm element of the H-matrix
| HM

| COL | NTEGER. Column index of the greatest in Euclidian norm element of the H
matrix | HM

ERROR Alternate return argument.

Remarks

The Euclidian norm of a number z is | z|] for real z, and (Re(z)2+Im(z)2)1/2 for complex z.
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SUBROUTI NE HGML2( | HVM TRON | COL, *ERROR )

Finds indices of the lowest in Euclidian norm element of H-matrix

Input Parameters
| HM | NTEGER. Handle to H-matrix AUMatrix.

Output Parameters

| ROW | NTEGER. Row index of the lowest in Euclidian norm element of the H-matrix
| HM

| COL | NTEGER. Column index of the lowest in Euclidian norm element of the H-
matrix | HM

ERROR Alternate return argument.

Remarks

The Euclidian norm of a number z is |z for real z, and (Re(z)2+Im(z)2)1/2 for complex z.

4.12. Extracting Elements of H-Objects

SUBROUTI NE HERH( | H, | HRE, *ERROR )

Create&Assign real part of H-object

Input Parameters
| H | NTEGER. Handle to H-object ANumber, AVector, or AMatrix.

Output Parameters

| HRE | NTEGER. Handle to the new real Hobject initialized with real part of the H
object | H.

ERROR Alternate return argument.

Remarks

Created object | HRE belongs to the same generic kind (ANumber, AVector, or AMatrix) as
the input object | H.
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SUBROUTINE HEIH( IH IH M *ERRCR)

Create&Assign imaginary part of H-object

Input Parameters
I H | NTEGER. Handle to H-object ANumber, AVector, or AMatrix.

Output Parameters

| H M | NTEGER. Handle to the new real H-object initialized with imaginary part of the
H-object | H.

ERROR Alternate return argument.

Remarks

Created object | H Mbelongs to the same generic kind (ANumber, AVector, or AMatrix) as
the input object | H. If Hobject | H is a descendant of AUMatrixSqHerm then HEI H represents

its imaginary part | HI Mas a corresponding descendant of AUMatrixSgGen.

SUBROUTI NE HENUMX( | HX, | HNUM *ERRCR )

Create&Assign integer numerator of exact H-number

Input Parameters
I HX | NTEGER. Handle to H-number AFRealExact.
Output Parameters

I HNUM | NTEGER. Handle to the new H-number AFInteger initialized with numerator of
the H-number | HX.

ERROR Alternate return argument.

SUBROUTI NE HEDENX( | HX, | HDEN, *ERRCR )

Create&Assign integer denominator of exact H-number

Input Parameters
| HX | NTEGER. Handle to H-number AFRealExact.
Output Parameters

| HDEN | NTEGER. Handle to the new H-number AFInteger initialized with denominator
of the H-number | HX.

ERROR Alternate return argument.
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SUBROUTI NE HEEV( | HV, | NDEX, |HEV, *ERROR )

Create&Assign element of H-vector

Input Parameters

| HV | NTEGER. Handle to H-vector AVector.

| NDEX | NTEGER. Index of the selected element of the H-vector | HV (positive number).
Output Parameters

| HEV | NTEGER. Handle to the new H-number AFFloat initialized with the | NDEX-th
element of the H-vector | HV.

ERROR Alternate return argument.

SUBROUTI NE HEREV( | HV, | NDEX, |HEVRE, *ERROR )

Create&Assign real part of element of H-vector

Input Parameters

| HV | NTEGER. Handle to H-vector AVector.
| NDEX | NTEGER. Index of the selected element of the H-vector | HV (positive number).

Output Parameters

| HEVRE | NTEGER. Handle to the new H-number AFRealFloat initialized with real part of
the | NDEX-th element of the H-vector | HV.

ERROR Alternate return argument.

SUBROUTI NE HEI EM( | HV, | NDEX, IHEVIM *ERROR )

Create&Assign imaginary part of element of H-vector

Input Parameters

| HV | NTEGER. Handle to H-vector AVector.

| NDEX | NTEGER. Index of the selected element of the H-vector | HV (positive number).
Output Parameters

| HEVI M | NTEGER. Handle to the new H-number AFRealFloat initialized with imaginary
part of the | NDEX-th element of the H-vector | HV.

ERROR Alternate return argument.
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SUBROUTI NE HEEM | HV, ROW [COL, |HEM *ERRCR )

Create&Assign element of H-matrix

Input Parameters

| HM | NTEGER. Handle to H-matrix AMatrix.

| ROW | NTEGER. Row ndex of the selected element of the H-matrix | HM (positive
number).

| COL | NTEGER. Column index of the selected element of the H-matrix | HM (positive
number).

Output Parameters

| HEM | NTEGER. Handle to the new H-number AFFloat initialized with the
(I ROW I COL) -th element of the H-matrix | HV

ERROR Alternate return argument.

SUBROUTI NE HEREM |THVM [TROWN | COL, |HEVMRE, *ERROR )

Create&Assign real part of element of H-matrix

Input Parameters

| HM | NTEGER. Handle to H-matrix AMatrix.

| ROV | NTEGER. Row index of the selected element of the Hmatrix | HM (positive
number).

| COL | NTEGER. Column index of the selected element of the Hmatrix | HM (positive
number).

Output Parameters

| HEVMRE | NTEGER. Handle to the new Hnumber AFRealFloat initialized with real part of
the (| ROW | COL) -th element of the H-matrix | HV

ERROR Alternate return argument.

SUBROUTI NE HEIEM |ITHM ITROWN |1CO., ITHEM M *ERROR )

Create&Assign imaginary part of element of H-matrix

Input Parameters
| HM | NTEGER. Handle to H-matrix AMatrix.

| ROV | NTEGER. Row index of the selected element of the Hmatrix | HM (positive
number).
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| COL | NTEGER. Column index of the selected element of the Hmatrix | HVI (positive
number).

Output Parameters

| HEM M | NTEGER. Handle to the new H-number AFRealFloat initialized with imaginary
part of the (| ROW | COL) -th element of the H-matrix | HV

ERROR Alternate return argument.

SUBROUTI NE HEVMR( |HM T RON | HV, *ERRCR )

Create&Assign H-matrix row

Input Parameters

| HV | NTEGER. Handle to H-matrix AMatrix

| ROW | NTEGER. Index of the selected row of the Hmatrix | HM (positive number).
Output Parameters

| HV | NTEGER. Handle to the new H-vector AUVector initialized with | ROWth row of
the H-matrix | HM

ERROR Alternate return argument.

SUBROUTI NE HEVMJ( | HV 1COL, | HVY, *ERRCR )

Create&Assign H-matrix column

Input Parameters

| HV | NTEGER. Handle to H-matrix AMatrix

| COL | NTEGER. Index of the selected column of the H-matrix | HM (positive number).
Output Parameters

| HV | NTEGER. Handle to the new H-vector AUVector initialized with | COL-th
column of the H-matrix | HM

ERROR Alternate return argument.
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4.13. Arithmetical Operations on H-objects

SUBROUTI NE HACPYH( | RH, ILH, *ERROR )
Create&Assign copy of H-object (unary plus)

Input Parameters

| RH | NTEGER. Handle to the initial H-object.
Output Parameters

| LH | NTEGER. Handle to the new copy of the H-object | RH.

ERROR Alternate return argument.

SUBROUTI NE HANEGH( | RH, |LH, *ERRCR )

Create&Assign negative of H-object (unary minus)

Input Parameters
| RH | NTEGER. Handle to the initial H-object.

Output Parameters

I LH | NTEGER. Handle to the new Hobiject initialized with the negative of H-object
| RH.
ERROR Alternate return argument.

SUBROUTI NE HACNJH( | RH, |LH, *ERRCR )

Create&Assign complex conjugate of H-object

Input Parameters
| RH | NTEGER. Handle to the initial H-object.
Output Parameters

| LH | NTEGER. Handle to the new H-object initialized with the complex conjugate of
H-object | RH.

ERROR Alternate return argument.
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SUBROUTI NE HAABS( | RHN, | LHNX, *ERRCR )

Create&Assign magnitude of H-number

Input Parameters
| RHNX | NTEGER. Handle to H-number ANumber.
Output Parameters

I LHNX | NTEGER. Handle to the new positive Hnumber AReal initialized with absolute
value of H-number | RHNX.

ERROR Alternate return argument.

SUBROUTI NE HAAHH | RHL, | RH2, |LH, *ERROR)
Create&Assign addition of H-objects

Input Parameters
| RH1 | NTEGER. Handle to the first summand.
| RH2 | NTEGER. Handle to the second summand.

Output Parameters

| LH | NTEGER. Handle to the new Hobject initialized with the result of the addition
| RH1 and | RH2.

ERROR Alternate return argument.

Remarks

Operands | RH1 and | RHZ2 must belong to the same generic kind, i.e. be descendants of
the same parent class ANumber, AVector, or AMatrix. Senseless cross-kind additions result in
run-time error #102 1 LLEGAL TYPE OF OPERAND". For the rules of selecting type of the
resulting H-object | LH please refer to section 3.7.

SUBROUTI NE HASHH | RHL, I RH2, |LH, *ERROR)

Create&Assign subtraction of H-objects

Input Parameters

| RH1 | NTEGER. Handle to the first operand (minuend).

| RH2 | NTEGER. Handle to the second operand (subtrahend).
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Output Parameters

I LH | NTEGER. Handle to the new H-object initialized with the result of the
subtraction | RH2 from | RH1.

ERROR Alternate return argument.

Remarks

Operands | RHL and | RH2 must belong to the same generic kind, i.e. be descendants of
the same parent class ANumber, AVector, or AMatrix. Senseless cross-kind subtractions result
in run-time error #102 “| LLEGAL TYPE OF OPERAND’. For the rules of selecting type of the
resulting H-object | LH please refer to section 3.7.

SUBROUTI NE HAVHH | RHL, | RHZ2,

Create&Assign multiplication of H-objects

I LH, *ERROR )

Input Parameters
| RH1 | NTEGER. Handle to the first factor.
| RH2 | NTEGER. Handle to the second factor.

Output Parameters

I LH | NTEGER. Handle to the new H-object initialized with the result of multiplication.
ERROR Alternate return argument.
Remarks

The table below represents the permissible combinations of types of the operands | RHL,
| RH2 and the corresponding type of the resulting H-object | LH. Any other combinations of
types result in run-time error #102 “I LLEGAL TYPE OF OPERAND".

| RH1 | RH2 | LH
ANumber ANumber ANumber
AFinite AUVector AUVector
AUMatrix AUMatrix
AUVector AFinite AUVector
AUVector AFFloat
AUMatrix AUVector
AUCompleteLU | AUVector
AUMatrix AFinite AUMatrix
AUVector AUVector
AUMatrix AUMatrix
AUCompleteLU | AUMatrix
AUCompleteLU | AUVector AUVector
AUMatrix AUMatrix
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For the rules of selecting type of the resulting Hobject | LH please refer to section 3.7.

Meaning of the left and right multiplications of H-vectors and H-matrices by H-objects
AUCompleteLU is explained in section 3.8.

SUBROUTI NE HADHH | RHL, I RH2, |LH, *ERROR)

Create&Assign division of H-objects

Input Parameters

| RH1 | NTEGER. Handle to the first operand (dividend).
| RH2 | NTEGER. Handle to the second operand (divisor).

Output Parameters

I LH | NTEGER. Handle to the new H-object initialized with the result of division.
ERROR Alternate return argument.
Remarks

A table below represents the permissible combinations of types of the operands | RHL,
| RH2 and the corresponding type of resulting H-object | LH. Any other combinations of types of
the operands result in run-time error #102 “I LLEGAL TYPE OF OPERAND'.

| RH1 | RH2 | LH
ANumber ANumber ANumber
AUVector AFinite AUVector
AUMatrix AFinite AUMatrix

For the rules of selecting type of the resulting H-object | LH please refer to section 3.7.

SUBROUTI NE HADPHH( | RH1, IRH2, ILH *ERRCR )

Create&Assign generalized conjugate dot product of H-objects

Input Parameters

| RHL | NTEGER. Handle to the first operand (factor).

| RH2 | NTEGER. Handle to the second operand (factor).
Output Parameters

| LH | NTEGER. Handle to the new H-object initialized with result of the generalized
conjugate dot product of H-objects | RH1 and | RH2.

ERROR Alternate return argument.



95
Remarks

Generalized conjugate dot product implies that the first factor is to be transposed and
complex conjugated when performing multiplication.

* For numbers a (the first operand) and b (the second operand) the result is ab.

» For vectors a (the first operand) and b (the second operand) the result is (a,b) = ? a; b;.

* For matrices A (the first operand) and B (the second operand) the result is A -B, where
~ denotes Hermitian conjugation.

Operands | RH1 and | RH2 must belong to the same generic kind, i.e. be descendants of
the same parent class ANumber, AVector, or AMatrix. Senseless cross-kind operations result in
run-time error #102 1 LLEGAL TYPE OF OPERAND'. For the rules of selecting type of the

resulting H-object | LH please refer to section 3.7.

SUBROUTI NE HUAHH | RH | LH *ERROR )
Update addition of H-objects

Input Parameters
| RH | NTEGER. Handle to the unchangeable summand.

Input/Output Parameters

I LH | NTEGER. Handle to the updated floating-point summand.
ERROR Alternate return argument.
Remarks

The table below represents the permissible combination of types of the operands | LH and
| RH. Any other combinations of types result in run-time error #102 “I LLEGAL TYPE CF
OPERAND".

| LH | RH
AFFloat AFinite
AUVector AUVector
AUMatrix AUMatrix

SUBROUTI NE HUSHH | RH |LH *ERROR )
Update subtraction of H-objects

Input Parameters
| RH | NTEGER. Handle to the unchangeable subtrahend.
Input/Output Parameters

| LH | NTEGER. Handle to the floating-point minuend.
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ERROR Alternate return argument.
Remarks

The table below represents the permissible combinations of operands | LH and | RH. Any
other combinations of types result in run-time error #102 “| LLEGAL TYPE OF OPERAND".

| LH | RH
AFFloat AFinite
AUVector AUVector
AUMatrix AUMatrix

SUBROUTI NE HUMHH I LH [IRH SIDE, *ERRCOR )

Update multiplication of H-objects

Input Parameters

| LH | NTEGER. Handle to the first factor.
| RH | NTEGER. Handle to the second factor.
SI DE CHARACTER* 1. The text descriptor that defines which operand is updated:

SIDE='L" -H-object| LHis to be updated with the product;.
SIDE='R -H-object| RHis to be updated with the product.

Input/Output Parameters
| LHor I RH | NTEGER. Handle to the updated floating-point factor.
ERROR Alternate return argument.
Remarks
The table below represents the permissible combinations of types of the operands | LH and

| RH. Any other combinations of types result in run-time error #102 “| LLEGAL TYPE CF
OPERAND”.

Updated Unchangeable
Operand Operand
AFFloat AFinite
AUVector AFinite
AUMatrixSq
AUCompleteLU
AUMatrix AFinite
AUMatrixSq
AUCompletelLU

Meaning of the left and right multiplications of H-vectors and H-matrices by H-objects
AUCompleteLU is explained in section 3.8.
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SUBROUTI NE HUDHH | RH | LH *ERROR )
Update division of H-objects

Input Parameters
| RH | NTEGER. Handle to the unchangeable dividend.

Input/Output Parameters

| LH | NTEGER. Handle to the updated floating-point divisor.
ERROR Alternate return argument.
Remarks

The table below represents the permissible combinations of types of the operands | LH and
| RH. Any other combinations of types result in run-time error #102 “| LLEGAL TYPE OF
OPERAND".

| LH | RH
AFFloat AFinite
AUVector AFinite
AUMatrix AFinite

SUBROUTI NE HUNEGH( | H *ERRCR )

Update with negative of H-object (unary minus)

Input/Output Parameters

| H | NTEGER. Handle the H-object AFFloat, AUVector, or AUMatrix that takes
negative of its initial value.

ERROR Alternate return argument.

SUBROUTI NE HUCNJH( | H *ERROR )

Update with complex conjugate of H-object

Input/Output Parameters

| H | NTEGER. Handle to the H-object AFFloat, AUVector, or AUMatrix that takes
complex conjugate of its initial value.

ERROR Alternate return argument.
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4.14. Mixed-Type Operations with Fortran Operands

SUBROUTI NE HAANF( FTYPE, FVAR |IRH |LH *ERROR )

Create&Assign addition of Fortran variable to H-number

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR The summand represented by Fortran variable.
| RH | NTEGER. Handle to the summand ANumber.

Output Parameters

| LH | NTEGER. Handle to the new H-number ANumber initialized with sum of the H-
number | RH and the variable FVAR.

ERROR Alternate return argument.

SUBRQUTI NE HASNF( FTYPE, FVAR | RH |LH *ERROR )

Create&Assign subtraction of Fortran variable from H-number

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR The subtrahend represented by Fortran variable.
| RH | NTEGER. Handle to the minuend ANumber.

Output Parameters

| LH | NTEGER. Handle to the new Hnumber ANumber initialized with difference of
the H-number | RH and the variable FVAR.

ERROR Alternate return argument.

SUBROUTI NE HAMHF( FTYPE, FVAR | RH |LH *ERROR )

Create&Assign multiplication of H-object by Fortran variable

Input Parameters
FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).

FVAR The factor represented by Fortran variable.
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| RH | NTEGER. Handle to the factor H-object ANumber, AUVector, or AUMatrix.

Output Parameters

| LH | NTEGER. Handle to the new Hobject initialized with product of the Hobject
| RH by the variable FVAR

ERROR Alternate return argument.

Remarks

The resulting Hobject | LH belongs to the same generic kind as the input H-object | RH, i.e.
it is a descendant of the same parent class ANumber, AUVector, or AUMatrix.

SUBROUTI NE HADHF( FTYPE, FVAR | RH |LH *ERROR )

Create&Assign division of H-object by Fortran variable

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR The divisor represented by Fortran variable.
| RH | NTEGER. Handle to the dividend H-object ANumber, AUVector, or AUMatrix.

Output Parameters

| LH | NTEGER. Handle to the new H-object initialized with quotient of division of the
H-object | RH by the variable FVAR.

ERROR Alternate return argument.
Remarks

The resulting Hobject | LH belongs to the same generic kind as the input H-object | RH, i.e.
it is a descendant of the same parent class ANumber, AUVector, or AUMatrix.

SUBROUTI NE HUANF( FTYPE, FVAR | H, *ERROR)

Update addition of Fortran variable to floating-point H-number

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR The unchangeable summand represented by Fortran variable.
Input/Output Parameters

| H | NTEGER. Handle to the Hnumber AFFloat that takes value of sum of its initial
value and the variable FVAR.
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Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUSNF( FTYPE, FVAR | H, *ERROR )

Update subtraction of Fortran variable from floating-point H-number

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR The unchangeable subtrahend represented by Fortran variable.
Input/Output Parameters

| H | NTEGER. Handle to the Hnumber AFFloat that takes value of difference of its
initial value and the variable FVAR.

Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUVHF( FTYPE, FVAR | H, *ERROR)

Update multiplication of floating-point H-object by Fortran variable

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
FVAR The unchangeable factor represented by Fortran variable.
Input/Output Parameters

I H | NTEGER. Handle to the Hobject AFFloat, AUVector, or AUMatrix that takes
value of product of its initial value by the variable FVAR.

Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUDHF( FTYPE, FVAR | H, *ERROR )

Update division of floating-point H-object by Fortran variable

Input Parameters

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).

FVAR The unchangeable divisor represented by Fortran variable.
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Input/Output Parameters

I H | NTEGER. Handle to the Hobject AFFloat, AUVector, or AUMatrix that takes
value of quotient of division of its initial value by the variable FVAR.

Output Parameters

ERROR Alternate return argument.

4.15. Math Constants and Functions

SUBROUTI NE HCPI ( NBI'T, |HPlI, *ERRCR )

Create&Assign constant P

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).

Output Parameters

| HPI | NTEGER. Handle to the new H-number AFRealFloat initialized with the NBI T-
accurate floating-point approximation of P = 3. 1415926535897932...

ERROR Alternate return argument.

SUBROUTI NE HCE( NBIT, |HE, *ERROR)

Create&Assign _constant €

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).

Output Parameters

| HE | NTEGER. Handle to the new Hnumber AFRealFloat initialized with the NBI T-
accurate floating-point approximation of € = 2. 718281828459045...

ERROR Alternate return argument.
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SUBROUTI NE HCLN2( NBI'T, | HLN2, *ERROR )
Create&Assign constant N2

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).

Output Parameters

I H | NTEGER. Handle to the new H-number AFRealFloat initialized with the NBI T-
accurate floating-point approximation of IN2 = 0. 69314718055994531.....

ERROR Alternate return argument.

SUBROUTI NE HFSQRT( NBI'T, | HNX [|H, *ERROR)

Create&Assign square root of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

I H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of square root of the H-number | HNX.

ERROR Alternate return argument.

Exceptions

If an infinite H-number is passed as the input parameter | HNX then HFSQRT produces the
following results:

Argument | HNX Result | H
CiInfUnsigned = | NF ClInfUnsigned = | NF
Positive CInfSigned = +I NF Positive CInfSigned = +1 NF
Negative CInfSigned = - | NF CiInfUnsigned = | NF

Remarks

The branch cut is on the real axis less than 0.
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SUBROUTI NE HFEXP( NBI T, | HNX, IH, *ERROR)

Create&Assign exponential function of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

I H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of exponential function of the H-number | HNX.

ERROR Alternate return argument.

Exceptions

If an infinite H-number is passed as the input parameter | HNX then HFEXP produces the
following results:

Argument | HNX Result | H

: _ Run-time error #0609 “FUNCTI ON
CiInfUnsigned = | NF DOES NOT HAVE A LIM T
Positive CInfSigned = +I NF Positive CInfSigned = +I NF
Negative CInfSigned = - | NF Zero AFRealFloat = 0

natural
SUBROUTI NE HFLN( NBI'T, ITHNX, IH *ERROR)

Create&Assign natural logarithm of H-number)

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

I H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of natural logarithm of the H-number | HNX.

ERROR Alternate return argument.
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Exceptions

If a zero or infinite Hnumber is passed as the input parameter | HNX then HFLN produces
the following results:

Argument | HNX Result | H
Zero AFinite = 0 CinfUnsigned = | NF
CiInfUnsigned = | NF CiInfUnsigned = | NF
Positive CInfSigned = +1 NF Positive CInfSigned = +I NF
Negative CInfSigned = - | NF CiInfUnsigned = | NF

Remarks

The branch cut is on the real axis less than 0.

SUBROUTI NE HFSI N NBI T, I HNX, IH, *ERRCR)

Create&Assign sine of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

I H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of sine of the H-number | HNX.

ERROR Alternate return argument.
Exceptions

If an infinite H-number is passed as the input parameter | HNX then HFSI N generates run-
time error #0609 “FUNCTI ON DOES NOT HAVE A LIM T".

SUBROUTI NE HFCOS( NBI'T, | HNX, IH, *ERROR)

Create&Assign cosine of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).

I HNX | NTEGER. Handle to argument ANumber.
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Output Parameters

| H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of cosine of the H-number | HNX.

ERROR Alternate return argument.

Exceptions

If an infinite H-number is passed as the input parameter | HNX then HFCOS generates run-
time error #0609 “FUNCTI ON DOES NOT HAVE A LI M T".

SUBROUTI NE HFTAN( NBIT, | HNX, IH, *ERRCR)

Create&Assign tangent of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

| H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of tangent of the H-number | HNX.

ERROR Alternate return argument.
Exceptions

If an infinite H-number is passed as the input parameter | HNX then HFTAN generates run-
time error #0609 “FUNCTI ON DOES NOT HAVE A LIM T".

SUBROUTI NE HFSI NH( NBI'T, | HNX |H *ERROR)

Create&Assign hyperbolic sine of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (ositive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

| H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of hyperbolic sine of the H-number | HNX.

ERROR Alternate return argument.
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Exceptions

If an infinite Hnumber is passed as the input parameter | HNX then HFSI NH produces the
following results:

Argument | HNX Result | H
CiInfUnsigned = | NF Run-time error #0609 “FUNCTI ON
DOES NOT HAVE A LIMT”
Positive CInfSigned = +I NF Positive CInfSigned = +| NF
Negative CInfSigned = - | NF Negative CInfSigned = - | NF

SUBROUTI NE HFCOSH( NBI' T, | HNX, | H, *ERROR)

Create&Assign hyperbolic cosine of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (ositive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

I H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of hyperbolic cosine of the H-number | HNX.

ERROR Alternate return argument.
Exceptions

If an infinite Hnumber is passed as the input parameter | HNX then HFCOSH produces the
following results:

Argument | HNX Result | H
CinfUnsigned = | NF Run-time error #0609 “FUNCTI ON
DOES NOT HAVE A LIM T”
Positive CInfSigned = +I NF Positive CInfSigned = +I NF
Negative CInfSigned = - | NF Positive CInfSigned = +1 NF

SUBROUTI NE HFTANH( NBI'T, | HNX | H, *ERROR)

Create&Assign hyperbolic tangent of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (ositive
number).

I HNX | NTEGER. Handle to argument ANumber.
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Output Parameters

I H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of hyperbolic tangent of the H-number | HNX.

ERROR Alternate return argument.

Exceptions

If an infinite Hnumber is passed as the input parameter | HNX then HFTANH produces the
following results:

Argument | HNX Result | H
CinfUnsigned = | NF Run-time error #0609 “FUNCTI ON
DOES NOT HAVE A LIM T”
Positive CInfSigned = +I NF AFRealFloat = +1
Negative CInfSigned = - | NF AFRealFloat= -1

SUBROUTI NE HFASI N( NBI'T, | HNX | H, *ERROR)

Create&Assign arcsine of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).

I HNX | NTEGER. Handle to argument ANumber.

Parameters

| H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-

accurate value of arcsine of the H-number | HNX.
ERROR Alternate return argument.

Exceptions

If an infinite Hnumber is passed as the input parameter | HNX then HFASI N produces the
following results:

Argument | HNX Result | H
CinfUnsigned = | NF CiInfUnsigned = | NF
Positive CInfSigned = +I NF CinfUnsigned = | NF
Negative CInfSigned = - | NF CiInfUnsigned = | NF

Remarks

The branch cuts are on the real axis, less than - 1 and greater than +1.
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SUBROUTI NE HFACOS( NBI'T, | HNX |H *ERROR)

Create&Assign arc-cosine of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

| H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of arc-cosine of the H-number | HNX.

ERROR Alternate return argument.
Exceptions

If an infinite Hnumber is passed as the input parameter | HNX then HFACOS produces the
following results:

Argument | HNX Result | H
CinfUnsigned = | NF Run-time error #0609 “FUNCTI ON
DOES NOT HAVE A LIM T
Positive CInfSigned = +I NF CiInfUnsigned = | NF
Negative CInfSigned = - | NF CInfUnsigned = | NF

Remarks

The branch cuts are on the real axis, less than - 1 and greater than +1.

SUBROUTI NE HFATAN( NBI' T, | HNX | H, *ERROR)

Create&Assign arc-tangent of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

| H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of arc-tangent of the H-number | HNX.

ERROR Alternate return argument.
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Exceptions

If an infinite Hnumber is passed as the input parameter | HNX then HFATAN produces the
following results:

Argument | HNX Result | H

CiInfUnsigned = | NF Run-time error #0609 “FUNCTI ON
DOES NOT HAVE A LIM T”

Positive CiInfSigned = +I NF AFRealFloat = /2

Negative CInfSigned = - | NF AFRealFloat = - p/2

Remarks

The branch cuts are on the imaginary axis, below - I and above +1.

SUBROUTI NE HFATN2( NBI T, | HNX1, |HNX2, |H *ERROR)

Create&Assign arc-tangent of two real H-number arguments

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).

I HNX1 | NTEGER. Handle to the first argument AReal.

I HNX2 | NTEGER. Handle to the second argument AReal.

Output Parameters

| H | NTEGER. Handle to the new H-number AFReal initialized with the NBI T-
accurate value of arc-tangent of the arguments | HNX1,. | HNX2.

ERROR Alternate return argument.

Exceptions

If zero or infinite HNnumber are passed as one of or both input parameters | HNX1, | HNX2
then HFATN2 produces the following results:

Argument | HNX1 Argument | HNX2 Result | H

Zero AFReal = 0 Zero AFReal = 0 Run-time error #0609 “FUNCTI ON
DOES NOI' HAVE A LIM T

CiInfSigned = 1 NF CinfSigned = £1 NF Run-time error #0609 “FUNCTI ON
DOES NOI' HAVE A LIM T

Positive CInfSigned = +1 NF [ Any AFReal AFRealFloat = /2

Negative CInfSigned = - | NF | Any AFReal AFRealFloat = - p/2

Any AFReal Positive CInfSigned = +I NF | AFRealFloat = 0

Any AFReal 3 0 Negative CInfSigned = - I NF | AFRealFloat = P
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Argument | HNX1 Argument | HNX2 Result | H
Any AFReal <0 Negative CInfSigned = - I NF | AFRealFloat = - P
Remarks

HFATN2 has exactly the same mathematical sense as the Fortran intrinsic function
ATANZ2( Y, X) = arctan( Y/ X) , whose resulting values belong to the half-interval ( - P, P] .

SUBROUTI NE HFASNH( NBI' T, | HNX, | H, *ERROR)

Create&Assign hyperbolic arcsine of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (positive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

| H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of hyperbolic arcsine of the H-number | HNX.

ERROR Alternate return argument.

Exceptions

If an infinite Hnumber is passed as the input parameter | HNX then HFASNH produces the
following results:

Argument | HNX Result | H
CiInfUnsigned = | NF CiInfUnsigned = | NF
Positive CInfSigned = +I NF Positive CInfSigned = +| NF
Negative CInfSigned = - | NF Negative CInfSigned = - | NF

Remarks

The branch cuts are on the imaginary axis, below - I and above +1.

SUBROUTI NE HFACSH( NBI T, | HNX, | H, *ERROR )

Create&Assign hyperbolic arc-cosine of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (ositive
number).

I HNX | NTEGER. Handle to argument ANumber.
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Output Parameters

| H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of hyperbolic arc-cosine of the H-number | HNX.

ERROR Alternate return argument.

Exceptions

If an infinite Hnumber is passed as the input parameter | HNX then HFACSH produces the
following results:

Argument | HNX Result | H
CinfUnsigned = | NF CInfUnsigned = | NF
Positive CInfSigned = +I NF Positive CInfSigned = +I NF
Negative CInfSigned = - | NF CiInfUnsigned = | NF

Remarks

The branch cut is on the real axis less than +1.

SUBROUTI NE HFATNH( NBI' T, | HNX, | H, *ERROR)

Create&Assign hyperbolic arc-tangent of H-number

Input Parameters

NBI T | NTEGER. Required number of correct significant bits in the result (ositive
number).
I HNX | NTEGER. Handle to argument ANumber.

Output Parameters

| H | NTEGER. Handle to the new H-number AFFloat initialized with the NBI T-
accurate value of hyperbolic arc-tangent t of the H-number | HNX.

ERROR Alternate return argument.

Exceptions

If +1 or an zinfinite H-number is passed as the input parameter | HNX then HFATNH
produces the following results:

Argument | HNX Result | H
AFinite = +1 Positive CInfSigned = +I NF
AFinite = -1 Negative CInfSigned = - | NF
CinfUnsigned = | NF Run-time error #0609 “FUNCTI ON
DOES NOT HAVE A LIM T”
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Argument | HNX Result | H
Positive CinfSigned = +1 NF Run-time error #0609 “FUNCTI ON
DOES NOI HAVE A LIM T
Negative CInfSigned = - | NF Run-time error #0609 “FUNCTI ON
DOES NOT HAVE A LIM T

Remarks

The branch cuts are on the real axis, less than - 1 and greater than +1.

4.16. Miscellaneous Numerical Operations

SUBROUTI NE HUVAXN( | HN, * ERRCR )

Updates floating-point H-number with maximum value

Input/Output Parameters

I HN | NTEGER. Handle to the H-number AFRealFloat that takes the maximum
representable value.

ERROR Alternate return argument.

Remarks

The maximum representable value depends on the sizes of mantissa and exponent fields
for te particular kind of the floating-point H-number | HN. Maximum values of H-numbers
CFReal4 and CFReal8 are equal to FLT MAX= 3.402823466E+38 and .DBL_MAX=
1. 7976931348623158D+308 respectively.

SUBROUTI NE HUM NN( | HN, *ERRCR )

Updates floating-point H-number with minimum value

Input/Output Parameters

| HN | NTEGER. Handle to the H-number AFRealFloat that takes the minimum
representable positive value.

ERROR Alternate return argument.

Remarks

The minimum representable positive value depends on the sizes of mantissa and exponent
fields for the particular kind of the floating-point Hnumber | HN. Minimum values of H-numbers

CFReald and CFReal8 are equal to FLT M N= 1.175494351E-38 and .DBL_M N=
2. 2250738585072014D- 308 respectively.



113

SUBROUTI NE HUEPSN( | HN, *ERROR )

Updates floating-point H-number with “machine epsilon” value

Input/Output Parameters

| HN | NTEGER. Handle to the H-number AFRealFloat that takes the “machine
epsilon” value, i.e. the smallest positive value EPS such that 1 0 + EPS is not
equal to 1. 0.

ERROR Alternate return argument.

Remarks

The “machine epsilon” value depends on the sizes of mantissa and exponent fields for the
particular kind of the floating-point Hnumber | HN. Machine epsilons for Hnumbers CFReal4
and CFReal8 are equal to FLT_EPSI LON= 1. 192092896E- 07 and .DBL_EPSI LON=
2. 2204460492503131D- 016 respectively.

SUBROUTI NE HFQTXX( | RHX1, | RHX2, 1HX *ERROR )

Create&Assign integer quotient of division of exact H-numbers

Input Parameters
| RHX1 | NTEGER. Handle to dividend AFRealExact.
| RHX2 | NTEGER. Handle to divisor AFRealExact.

Output Parameters

| HX | NTEGER. Handle to the new H-number AFInteger initialized with integer
guotient of division of the H-number | RHX1 by | RHX2.

ERROR Alternate return argument.

Remarks

HFQT XX computes the nearest to zero integer approximation of the quotient, thus implying
that the reminder of division has the same sign as numerator | RHX1.

SUBROUTI NE HFRMXX( | RHX1, | RHX2, | HX, *ERROR )

Create&Assign reminder of division of exact H-numbers

Input Parameters
| RHX1 | NTEGER. Handle to dividend AFRealExact.

| RHX2 | NTEGER. Handle to divisor AFRealExact.
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Output Parameters

| HX | NTEGER. Handle to the new Hnumber AFRealExact initialized with reminder
of division of the H-number | RHX1 by | RHXZ2.

ERROR Alternate return argument.

Remarks

Reminder of division computed by HFRMXX has the same sign as numerator | RHX1.

SUBROUTI NE HFFACT( | HX, I'H *ERROR )

Create&Assign factorial of integer H-number

Input Parameters
| HX | NTEGER. Handle to H-number CFinteger4.

Output Parameters

I H | NTEGER. Handle to the new H-number ANumber initialized with factorial of the
H-number | HX.

ERROR Alternate return argument.

Remarks

For negative values of the argument | HX HFFACT outputs H-objects CinfUnsigned.

SUBROUTI NE HAPWR2( | RH, POVER | LH *ERRCR )

Create&Assign product of H-number by integer power of 2

Input Parameters

| RH | NTEGER. Handle to H-number ANumber.
PONER | NTEGER. The power of 2.

Output Parameters

I LH | NTEGER. Handle to the new H-number ANumber initialized with the product of
H-number | RH by 2* * POV\ER.

ERROR Alternate return argument.

SUBROUTI NE HUPWR2( POVER, | H, *ERROR )

Updates floating-point H-number with its product by integer power of 2

Input Parameters

PONER | NTEGER. The power of 2.
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Input/Output Parameters

I H | NTEGER. Handle to the H-number AFFloat that takes the value of product of
its initial value by 2* * PONER.

Output Parameters

ERROR Alternate return argument.

SUBROUTI NE HUSQRT( | HN, *ERRCR )

Updates floating-point H-number with its square root

Input/Output Parameters

| HN | NTEGER. Handle to the H-number AFFloat that takes the value of square root
of its initial value.

Output Parameters
ERROR Alternate return argument.

Remarks

If a negative H-number AFRealFloat is passed .as the input parameter | HN then HUSQRT
generates run-time error #404 “UPDATE OPERATI ON FAI LURE".

4.17. Linear Equations

SUBROUTI NE HUCLY( | H, *ERROR )

Performs complete LU decomposition of square H-matrix

Input/Output Parameters

| H | NTEGER. Input value of | H should be a handle to Hmatrix AUMatrixSq. Its
output value is a tandle to the corresponding H-object AUCompleteLU that
contains triangular factor(s) of the original matrix.

Output Parameters
ERROR Alternate return argument.
Remarks
.To solve system of algebraic linear equations with a given RHS Hvector or Hmatrix one
should perform Create&Assign or Update multiplication of the RHS H-object by H-object

AUCompleteLU using subroutines HAMHH or HUMM respectively. For details of the procedure,
please refer to the section 3.8.
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4.18. Linear Eigenvalue Problems

SUBROUTI NE HUHES( | H, *ERROR )

Transforms square H-matrix to Hessenberg form

Input/Output Parameters

| H | NTEGER. Input value of | H should be a handle to Hmatrix AUMatrixSq. Its
output value is a handle to the corresponding H-object AUHessenberg that
contains Hessenberg form of the original matrix, matrix of transformation, and
permutation vector.

Output Parameters

ERROR Alternate return argument.

Remarks

HUHES overwrites the original matrix with its Hessenberg form. To solve a linear eigenvalue
problem one should use the described below subroutine HUEI G that accepts an H-object
AUHessenberg as input parameter.

SUBROUTI NE HUEI ( | H, |HY, *ERROR)

Solves linear eigenvalue problem

Input/Output Parameters

| H | NTEGER. Input value of | H should be a handle to Hobject AUHessenberg. Its
output value is a handle to the corresponding Hmatrix AUMatrix composed of
the computed column eigenvectors.

Output Parameters

| H | NTEGER. Handle to the new Hvector AUVector composed of the computed
eigenvalues.

ERROR Alternate return argument.

Remarks

HUEI G overwrites the original Hessenberg matrix with the computed matrix of

eigenvectors. To transform a square H-matrix to its Hessenberg form one should use the
described above subroutine HUHES.
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4.19. 1/0 Binary Operations

SUBROUTI NE HWRI TE(  WCBACK, | H *ERRCR )
Writes H-object to binary file

Input Parameters

WCBACK Name of the Fortran callback subroutine.
I H Handle to the H-object to be written.
Output Parameters

ERROR Alternate return argument.

Remarks

See section 3.6 for details of binary I/O operations and specifications of the callback
subroutine WCBACK.

SUBROUTI NE HREAD( RCBACK, NSIZE, |H, *ERROR)

Reads H-object from binary file

Input Parameters
RCBACK Name of the Fortran callback subroutine.
NSI ZE | NTEGER. The size of H-object in 32-bit words (positive number).

Output Parameters

| H | NTEGER. Handle to the new H-object.
ERROR Alternate return argument.
Remarks

See section 3.6 for details of binary 1/0 operations and specifications of the callback
subroutine RCBACK.
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4.20. Text Output

SUBROUTI NE HETNXO( | HNX, STR, *ERROR )

Converts H-number to unformatted text string

Input Parameters

| HNX | NTEGER. Handle to H-number ANumber.

Output Parameters

STR CHARACTER* . Unformatted text representation of the H-number | HNX.
ERROR Alternate return argument.
Remarks

See section 3.5 for details of unformatted text output.

SUBROUTI NE HETEVO( | HV, I NDEX, STR *ERRCR )

Converts element of H-vector to unformatted text string

Input Parameters
| HV | NTEGER. Handle to H-vector AVector.
| NDEX | NTEGER. Index of the selected element of Hvector | HV (positive number).

Output Parameters

STR CHARACTER* . Unformatted text representation of the | NDEX-th element of H-
vector | HV.

ERROR Alternate return argument.

Remarks

See section 3.5 for details of unformatted text output.

SUBROUTI NE HETEMD( IHM | ROW |COL, STR *ERRCR )

Converts element of H-matrix to unformatted text string

Input Parameters

| HM | NTEGER. Handle to H-matrix AMatrix.
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| ROV | NTEGER. Row index of the selected element of H-matrix | HM (positive
number).

| COL | NTEGER. Column ndex of the selected element of H-matrix | HV (positive
number).

Output Parameters

STR CHARACTER*. Unformatted text representation of the (| ROW | COL) -th
element of H-matrix | HV

ERROR Alternate return argument.

Remarks

See section 3.5 for details of unformatted text output.

SUBROUTI NE HETNX( ITHNX, ITW IP, IM IE STR *ERROR)

Converts H-number to formatted text string

Input Parameters

I HNX | NTEGER. Handle to H-number ANumber.
| W | NTEGER. Full width of the output field (positive number).
| P | NTEGER. Format parameter that fecifies position of decimal point in the

floating-point Hnumbers AFFloat, or position of separating slash in the rational
H-numbers CFRational.

| M | NTEGER. Number of decimal digits of mantissa of the floating-point H-numbers
AFFloat (positive number).

| E | NTEGER. Number of decimal digits of exponent of the floating-point H-
numbers AFFloat (positive number).

Output Parameters

STR CHARACTER* . Formatted text representation of the H-number | HNX.
ERROR Alternate return argument.
Remarks

Parameter | Wshould not be less than | M+l E+4 for the real Hnumbers AFRealFloat and
less than 2* (| M+l E) +11 for the complex H-numbers AFComplexFloat. When formatting
exact and infinite H-numbers parameters | Mand | E are ignored. Parameter | P makes a
difference only for the floating-point and rational H-numbers AFFloat and CFRational. See
section 3.5 for the specifications of output formats used for different kinds of numbers.
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SUBROUTI NE HETEV(

Converts element of H-vector to formatted text string

IHV, INDEX, IW IP, IM

| E, STR *ERROR )

Input Parameters

| HV | NTEGER. Handle to H-vector AUVector.

| NDEX | NTEGER. Index of the selected element of Hvector | HV (positive number).
| W | NTEGER. Full width of the output field (positive number).

| P | NTEGER. Format parameter that specifies position of decimal point.

Y | NTEGER. Number of decimal digits of mantissa (positive number).

| E | NTEGER. Number of decimal digits of exponent (positive number).

Output Parameters

STR CHARACTER* . Formatted text representation of the | NDEX-th element of H
vector | HV.
ERROR Alternate return argument.

Remarks

Parameter | Wshould not be less than | M+l E+4 for real Hvectors AUVectorReal and less
than 2* (| M+l E) +11 for complex H-vectors AUVectorCompl. See section 3.5 for the
specifications of output formats.

SUBROUTI NE HETEM |THV TROWN 1COL, W IP IM

Converts element of H-matrix to formatted text string

| E, STR *ERROR)

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.

| ROW | NTEGER. Row index of the selected element of H-matrix | HV (positive
number).

| COL | NTEGER. Column hdex of the selected element of H-matrix | HM (positive
number).

| W | NTEGER. Full width of the output field (positive number).

| P | NTEGER. Format parameter that specifies position of decimal point.

Y | NTEGER. Number of decimal digits of mantissa (positive number).

| E | NTEGER. Number of decimal digits of exponent (positive number).
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Output Parameters

STR CHARACTER*. Formatted text representation of the (| ROV | COL)-th element
of H-matrix. | HM

ERROR Alternate return argument.

Remarks

Parameter | Wshould not be less than | M+l E+4 for real H-matrices AUMatrixReal and less

than 2* (| M+l E) +11 for complex H-matrices AUMatrixCompl. See section 3.5 for the
specifications of output formats.

4.21. Conversion to Fortran Data

SUBROUTI NE HEFNX( | HN, FTYPE, FVAR *ERRCR )

Converts finite H-number to Fortran variable

Input Parameters
| HN | NTEGER. Handle to H-number AFinite.
FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).

Output Parameters

FVAR Fortran variable that takes converted value of the H-number | HN.
ERROR Alternate return argument.
Remarks
Conversion to the | NTEGER type is not allowed, i.e. input value FTYPE="1" s treated as

an illegal one. If underflow or overflow occurs during conversion then FVAR is set to zero or
*| NF respectively.

SUBROUTI NE HEFEV( | HV, | NDEX, FTYPE, FVAR *ERRCR )

Converts element of H-vector to Fortran variable

Input Parameters
| HV | NTEGER. Handle to H-vector AUVector.
| NDEX | NTEGER. Index of the selected element of the H-vector | HV (positive number).

FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).
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Output Parameters

FVAR Fortran variable that takes converted value of the | NDEX-th element of H-vector
| HV.
ERROR Alternate return argument.
Remarks
Conversion to the | NTEGER type is not allowed, i.e. input value FTYPE="1" s treated as

an illegal one. If underflow or overflow occurs during conversion then FVAR is set to zero or
*| NF respectively.

SUBROUTI NE HEFV( | HV, NDI M FTYPE, FARRAY, *ERROR )

Converts H-vector to Fortran array

Input Parameters

| HV | NTEGER. Handle to H-vector AUVector.

NDI M | NTEGER. Dimension of the output array FARRAY that should be equal to or
greater than Dimension of the H-vector | HV.

FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see section 4.2).

Output Parameters

FARRAY Fortran array that takes converted representation of the H-vector | HV.
ERROR Alternate return argument.
Remarks
Conversion to the | NTEGER type is not allowed, i.e. input value FTYPE="1" s treated as

an illegal one. If underflow or overflow occurs during conversion then the corresponding element
of FARRAY is set to zero or I NF respectively.

SUBROUTI NE HEFEM' | HVM T RON | COL, FTYPE, FVAR *ERROR )

Converts element of H-matrix to Fortran variable

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.

| ROW | NTEGER. Row ndex of the selected element of the H-matrix | HM (positive
number).

| COL | NTEGER. Column index of the selected element of the H-matrix | HM (positive

number).
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FTYPE CHARACTER* 1. Fortran type descriptor for FVAR (see section 4.2).

Output Parameters

FVAR Fortran variable that takes converted value of the (| ROW | COL) -th element of
H-matrix | HV
ERROR Alternate return argument.
Remarks
Conversion to the | NTEGER type is not allowed, i.e. input value FTYPE='1" is treated as

an illegal one. If underflow or overflow occurs during conversion then FVAR is set to zero or
*| NF respectively.

SUBROUTI NE HEFMR( | HV] T RON NDI M FTYPE, FARRAY, *ERROR )

Converts H-matrix row to Fortran array

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.
| ROW | NTEGER. Index of the selected row of the H-matrix | HM (positive number).
NDI M | NTEGER. Dimension of the output array FARRAY that should be equal to or

greater than number of columns of H-matrix | HV.
FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see section 4.2).

Output Parameters

FARRAY Fortran array that takes converted representation of the | ROMNth row of H-matrix
| HM
ERROR Alternate return argument.
Remarks
Conversion to the | NTEGER type is not allowed, i.e. input value FTYPE="1" s treated as

an illegal one If underflow or overflow occurs during conversion then the corresponding element
of FARRAY is set to zero or I NF respectively.

SUBROUTI NE HEFMC( |HM 1 COL, NDIM FTYPE, FARRAY, *ERROR )

Converts H-matrix column to Fortran array

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.

| CQL | NTEGER. Index of the selected column of the H-matrix | HM (positive number).
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NDI M | NTEGER. Dimension of the output array FARRAY that should be equal to or
greater than number of rows of H-matrix | HV.

FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see section 4.2).
Output Parameters

FARRAY Fortran array that takes converted representation of the | COL-th column of H

matrix | HV
ERROR Alternate return argument.
Remarks
Conversion to the | NTEGER type is not allowed, i.e. input value FTYPE="1" is treated as

an illegal one. If underflow or overflow occurs during conversion then the corresponding element
of FARRAY is set to zero or | NF respectively.

SUBROUTI NE HEFM' | HV, NROW NCCOL, FTYPE, FARRAY, *ERROR )

Converts H-matrix to Fortran array

Input Parameters

| HM | NTEGER. Handle to H-matrix AUMatrix.

NROW | NTEGER. Number of rows of the H-matrix | HM (positive number).
NCOL | NTEGER. Number of columns of the H-matrix | HM (positive number).
FTYPE CHARACTER* 1. Fortran type descriptor for FARRAY (see section 4.2).

Output Parameters

FARRAY Fortran array that takes converted representation of the H-matrix | HV Size of
the array should be equal to or greater than total number of elements of H-matrix
| HVI i.e. NROWF ( NROW+1) / 2 for Hermitian matrices stored in the packed form
(in this case NROW = NCOL), or NROV¥ NCOL for all other kinds of matrices.

ERROR Alternate return argument.
Remarks
Conversion to the | NTEGER type is not allowed, i.e. input value FTYPE="1" s treated as

an illegal one. If underflow or overflow occurs during conversion then the corresponding element
of FARRAY is set to zero or I NF respectively.
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Appendix A. Error Codes

Table A-1. Numerical Error Codes

Resource Errors

Code Text Message Comment
HEAP MEMORY ALLOCATI ON | OS-level dynamic memory allocation failure.
0001
FAlI LURE
User-defined maximum size of heap memory is
0002 | MAX HEAP SI ZE OVERFLOW exceeded.
EXLAF77 internal memory pool overflow. Memory
0003 | MEMORY POOL OVERFLOW pools are not implemented in the present version
though.
Interface Errors
Code Text Message Comment
Input H-object is not created, or it is deleted, or its
0101 | INVALI D CBJECT HANDLE handle is corrupted by the calling program
0102 | LLEGAL TYPE OF Called function does not accept input Hobject of the
OPERAND present type as an operand.
0103 UNRECOGNI ZED TEXT Input CHARACTER descriptor does not coincide with
DEESCRI PTOR any character or string recognizable by called function.
0104 | LLEGAL FORMAT OF Input text string has an illegal format, or it is empty, or
I NPUT STRI NG its length is incorrectly defined.
0105 I NVALI D FLOATI NG PO NT | Input single or double precision floating-point data
DATA contain denormalized values, | NFs, or NaNs.
Present index value is not positive, or it exceeds
0106 | INDEX I'S OQUT OF RANGE respective dimension of the vector or matrix, or passed
actual parameter is not an | NTEGER.
0107 | MPROPER ARRAY (I:j)_imens_ion o]f input array is not equal to the _respclective
DI VENSI ON imension of target vector, matrix row, matrix column,
or entire matrix.
0108 | MPROPER PARAVETER lllegal or senseless numerical value of input
VAL UE parameter, or passed actual parameter has a wrong
Fortran type.
Floating-Point Errors
Code Text Message Comment
0201 FLOATI NG PO NT Unrecoverable floating-point underflow during “update”
UNDERFLOWN operation resulted in denormalized value.
0202 FLOATI NG PO NT Unrecoverable floating-point overflow during “update”
OVERFLOW operation resulted in the | NF value.
0203 FLOATI NG PO NT Unrecoverable floating-point division zero by zero
DI VI SI ON ZERO BY ZERO | resulted in the NaN value.
lllegal operations
Code Text Message | Comment
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Attempt of assigning complex value to a real number

0301 | ASSI GN COVPLEX TO REAL i
or to element of a real vector or matrix.
0502 ASSI GN TO | MAG NARY Atterl;lpt of assigning a value to im?gi?ary part (f)f a reall
PART OF REAL number, or to imaginary part of element of a rea
vector or matrix.
0303 COMPARE COMPLEX Attempt to compare two complex numbers by value
NUVBERS (equivalent to the LT or GT operators).
Calculus Errors
Code Text Message Comment
0401 TOO BI G ABS VALUE OF Absolute value of a function argument is so big that the
ARGUVENT result length exceeds the internal EXLAF77 limit.
Absolute value of exponent of a function argument is
0402 TOO BI G ABS VALUE OF so big that the result length exceeds the internal
EXPONENT -
EXLAF77 limit.
0403 ARGUMENT |'S QUT OF Argument value does not belong to the domain of
RANGE algorithm applicability.
Result of an Update operation cannot be assigned to
0404 UPDATE OPERATI ON variable due to incompatibility of types. Example:
FAlI LURE X = SQRT( X) , where X is a negative real floating-point
number.
Matrix Operation Errors
Code Text Message Comment
0501 OPERANDS DI MENSI ONS Disparity of operands’ dimensions of binary vector /
M SNVATCH matrix operations.
0502 | SI NGULAR MATRI X ThPT ma_trix appeared to _b_e algorithmically singular
during triangular decomposition.

0503 | NDEFI NI TE HERM TI AN The Hermitian matrix declared as positive-definite
MATRI X appeared to be indefinite during decomposition.
Undefined Result

Code Text Message Comment

0601 | DI VI DE ZERO BY ZERO 0/ 0

0602 DI VIDE INFINITY BY I NF/ I NF, (£l NF) /I NF, | NF/ (£l NF) , or
I NFINETY (I NF) / (£l NF)

0603 | MLTTPLY TNFINITY BY | NF*0, or (+ NF) * 0
ZERO

0604 RAI SE INFINITY TO | NF**0, or (+l NF) **0
ZEROTH PONER

0605 SUBTRACT | NEI NI TY EroM | | NF2ENF, T NFH( I NF) , (£ NF) + NF,
| NFI NI TY (+I NF) +(- I NF) , (+1 NF) - (+I NF) , or

(-INF)-(-1NF)

0606 | REMAI NDER WTH ZERO MOD( N, 0) where Nis a finite number
DENOM NATOR

0s07 | LNT QUOTI ENT W TH ZERO | | NT(N 0) where Nis a finite number
DENOM NATCR

0608 RE/ I M PART CF UNSI GNED | REAL( I NF), or | MAG( | NF)

I NFI NI TY
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0609

FUNCTI ON DCES NOT HAVE
ALIMT

SIN(INF), SIN(#lNF), COS(INF), COS(#l NF),
TAN(I NF), TAN(#H NF), SINH(INF), COSH I NF),
EXP(1 NF) , ATAN2(0, 0), or ATAN2( #I NF, +I NF)

Programming Bugs

Code

Text Message

Comment

>10000

About 10 different messages

EXLAF77 internal bugs that should be reported to QNT
Software Development Inc.
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Appendix B. Routines Reference

Opening and Closing Working SESSION ......ccoovviiiiiieei i 44
HSINIT  Opens EXLAF77 WOrKING SESSION........ccccuiiiiieeee e e et e e e e e e s ssitreee e e e e e s e s snnanaeeeea e 44
HSEXI T  Closes EXLAF77 WOIrKiNG SESSION .....cccoiuuiieeiiiiieeesiiiieeesiieeeessieeeesssneeeessnneeesennnees 45
Handling RUN TIME ErTOIS ....oii it 45
HSERR Retrieves numerical code of last run-time error...........ccceevvcveeeeeciiee e 45
HSEMSK  Masks text massages Of run-time €rror..........ccvveeeiiiiee e e e e 46
HSDMSK  Unmasks text massages Of ruN-time €ITON ..........ooouiuieieiiiieie e 46
HSMSKA  Sets mode of masking error MESSAGES........ccuuiiriiiiiiieiie e 46
HSUNDF  Switches modes of floating-point underflow control ..., 47
ReleaSiNg MEMOIY ..o 47
HSDOBJ DeleteS H-0DJECT.... ... 47
HSDALL Deletes all H-ODJECTS ....cooiiiee ettt e e eeeenes a7
HSEVRK  Sets memory allocation MAark ...........ooceoiiiiiiiiiiiiie e 48
HSDVRK ~ Removes memory allocation Mark...........cccocueeiiieiiiie i 48
HSDGRP  Deletes designated group of H-0DJECLS .......coeviieiiiiiiiiiiiiee e, 48
Retrieving Information on H-OBJEeCtS .......ccovviiiiiiie e 49
[ I I O £ o o] o) =T od 11101 =SSR 49
HLREAL IS H-ODJECT FEAIT ... an e 49
HLFLT ....Is H-object composed of floating-point NUMDBErs?..........cccoveeiiiiei i 49
HLNUM  ....IS H-0ODBJect @ NUMBDEI? ......cooeee e e 50
HLI NT.... IS H-number an integer NUMDEI?..........ooo i s 50
HLVECT = IS H-ODJECE @ VECIOI? ...ttt 50
HLVATR IS H-0DJECt @ MALIIX ...ccoiiiiiee it 51
HLVMBQR  Is H-object a (transformed) Square MatrixX?.........cooocueeeeeiiieieesiiieeeesnieeeessieeee e 51
HLHERM Is H-object a (transformed) Hermitian MatriX? ..........cccoeriiieiiiieniie e 51
HLCLU ....Is H-object a complete LU decomposition of square matrix? .........cccccevveeriveennnen. 52
HLHES ....Is H-object a Hessenberg form of square matrix? ........cccccceevveiiivieeeee e, 52
HLZERO IS H-ODJECT ZEIO? ...t 52
HLNXPO IS real H-NUMDBDEr POSITIVE? ........oiiiiiieieie ettt 53
HLNXNE IS real HHNUMDEr NEQALIVE? ......cocoiiieiee ettt e e e 53
HLEVPO Is element of real H-VECIOr POSITIVE? .....c.vuiiiiiiiiiee e 53
HLEVNE Is element of real H-VECtOr NEQALIVE? .........ccoiiiiiiieeiiie et 54
HLEMPO Is element of real H-matriX POSItIVE? ..........oiiiiiiiiiiiiiiie e 54
HLEMNE Is element of real H-matrix NEQAtiVE?...........cooiuuieeeiiiiie et 54
HGNAVE  Returns class name Of H-ODJECT ..o 55
HGFLTS  Returns sizes of exponent and mantissa fieldS...........ccoecveveeiiciiee v 55
HGVDI M Returns dimension Of H-VECION ...........ccoiiiiiii i 56
HGVDI M Returns dimensions of (transformed) H-matriX ..........cccccceeeiiiiiiiiiieeec e, 56
Creating Empty H-ODjJECtS ... 56
HWN Creates new floating-point H-NUMDET ..........cuiiiiiiiiie e 56
HW Creates NEW H-VECION..... ... et e e e e e e e e e e eeaes 57
HWI ...Creates new general H-MAatriX ........oocveeiiiieiiiie e 58

HVVIS

...Creates NeW Hermitian HematliX .....oeeee ettt e e e e e e e e eee e e e e e as 58



Creating H-Objects with Initialization...........cccccociiiiiiiiiiceiieeeeeeeeeeeeee, 59

Initialization With TeXt STrNG .....oovuiii e 59
HANXT ....Creates new H-number initialized with text String..........cccovveeiiiiee e, 59

Initialization with Fortran Data .........ccociiiiiiiiiii e 60
HAXF ....Creates new exact H-number initialized with quotient of two integers.................... 60
HANF ....Creates new floating-point H-number initialized with Fortran variable..................... 60
HAVF ....Creates new H-vector initialized with Fortran array ............cccccccveeeeviiee e, 60
HAMF ....Creates new general H-matrix initialized with Fortran array...........cccccceevvvieeeennnen. 61
HAMSF ....Creates new Hermitian H-matrix initialized with Fortran array ............cccccceevieennen. 62

Initialization With H-ODBJECT ... e 62
HAXN ....Creates new exact H-number initialized with floating-point H-number ................... 62
Updating Floating-Point H-ODJECTS .......cveeiiiiiiiiiiee e 63

T X I P UL e e 63
HUNT ....Updates floating-point H-number with text String .......ccccccvcveiiiiene e 63
HUEVT ...Updates element of H-vector with text StriNg........ccoccuveriiiiiiiieiieeee e 63
HUEMT  ....Updates element of H-matrix with text String.........ccccceeeviiieeciiiiie e, 64

IMPOrt Of FOrtran Data ........couiiiiiiii e 64
HUNF Updates floating-point H-number with Fortran variable..............ccccccoviiiiiiinnnns 64
HURNF Updates real part of complex floating-point Hnumber with Fortran variable ......... 65
HUI NF Updates imaginary part of complex H-number with Fortran variable...................... 65
HUEVF Updates element of H-vector with Fortran variable ...............cccoooiiiiiees 66
HUREVF  Updates real part of element of complex H-vector with Fortran variable................. 66
HUI EVF  Updates imaginary part of element of complex H-vector with Fortran variable ...... 67
HUVF Updates H-vector with FOrtran array............ccceocveeeeiiiieee e 67
HUEM- Updates element of H-matrix with Fortran variable ...............cccoooiiiiiiieees 68
HUREMF  Updates real part of element of complex H-matrix with Fortran variable................. 68
HUI EMF  Updates imaginary part of element of complex H-matrix with Fortran variable ...... 69
HUMRF Updates H-matrix row With FOItran array.......ccccccooeecvreeeeeeeeeecciieeeeeeeee e s ssivnneeeea e 69
HUMCF Updates H-matrix column with FOrtran array.........cccocceeeeiiiiieeeiiiieee s siieee e 70
HUMF Updates general H-matrix with FOrtran array ............ccoccceveeinieeiniee e 70
HUNVSF Updates Hermitian H-matrix with FOrtran array ............ccccovveeriieeiiiee e ssiee e 71

Updating With Another H-ObjJeCt ..o 71
HUHH ....Updates floating-point H-object with finite H-object............cccoiieiiiie 71
HURNN ....Updates real part of complex H-number with finite real Hnumber ......................... 72
HUI NN ....Updates imaginary part of complex H-number with finite real H-number ............... 72
HUEVN ....Updates element of H-vector with finite H-number................ccoov . 72
HUREVN  Updates real part of element of complex H-vector with finite real H-number ......... 73
HU EVN  Updates imaginary part of element of complex H-vector with finite real H-number 73
HUEMN ....Updates element of H-matrix with finite H-number..........c...cccoooveiiiie e, 73
HUREVMN  Updates real part of element of complex H-matrix with finite real H-number ......... 74
HU EMN  Updates imaginary part of element of complex H-matrix with finite real Hrnumber 74
HUVRV  ...Updates H-matrix row With H-VECIOr ...........cocuiiiiiiiiiie e 75
HUMCV  ....Updates H-matrix column with H-VECLOr ............coooviiiieeiiiee e 75
Relational OperatioNS........occuiiiiiiee e e e 76
HLEQL ....Logical. EQ for generic H-ODJECTS .......ccueiiiiiiiiie e 76

HLGNN ....Logical . GT. for real HHNUMDEIS ..........coooiiiiiiiiiieee e 76



HLLNN ....Logical . LT. forreal H-NUMDEIS ..........coooiiiiiiiiiie e 77
Finding Minimum and Maximum Elements............cccocvieeeeeiiiciiieeeeeenn, 77
HGVG ...Finds index of the greatest element of real HvecCtor ............cccccoceeiviieeeeccieee e 77
HGVL ...Finds index of the lowest element of real HVeCtOr .............cccovviiiiiiiiiiee i 77
HGVGL ....Finds index of the greatest in octahedral norm element of H-vector ....................... 78
HGVL1 ....Finds index of the lowest in octahedral norm element of Hvector............c............. 78
HGV& ....Finds index of the greatest in Euclidian norm element of H-vector ......................... 78
HGVL2 ....Finds index of the lowest in Euclidian norm element of Hvector..............cccceeeneee. 79
HGVRG ....Finds column index of the greatest element in row of real H-matriX........................ 79
HGVRL ....Finds column index of the lowest element in row of real H-matrix ............cccc.c....... 79
HGVRGL Finds column index of the greatest in octahedral norm element in H-matrix row ... 80
HGVRL1 Finds column index of the lowest in octahedral norm element in H-matrix row ...... 80
HGVRG2 Finds column index of the greatest in Euclidian norm element in H-matrix row....... 80
HGVRL2 Finds column index of the lowest in Euclidian norm element in H-matrix row ........ 81
HGVCG ....Finds row index of the greatest element in column of real Hmatrix........................ 81
HGVCL ....Finds row index of the lowest element in column of real H-matrix ............cccccoc...... 82
HGVCGL Finds row index of the greatest in octahedral norm element in H-matrix column ... 82
HGVCL1 Finds row index of the lowest in octahedral norm element in H-matrix column...... 82
HGMC&2 Finds row index of the greatest in Euclidian norm element in H-matrix column...... 83
HGVCL2 Finds row index of the lowest in Euclidian norm element in H-matrix column ........ 83
HGMG ...Finds indices of the greatest element of real HmatrixX.............ccccceeeviiieeeiiiieee e, 84
HGWL ...Finds indices of the lowest element of real H-matriX ............ccccovveeiiieniieniiiee s, 84
HGVIGL  ....Finds indices of the greatest in octahedral norm element of Hmatrix .................... 84
HGW.1 ....Finds indices of the lowest in octahedral norm element of H-matrix ....................... 85
HGM= ....Finds indices of the greatest in Euclidian norm element of Hmatrix ...................... 85
HGW2 ....Finds indices of the lowest in Euclidian norm element of H-matrix ..............ccccou..... 86
Extracting Elements of H-ODJeCtS......ccccccve i 86
HERH ....Create&Assign real part of H-ODJECT.........cooviiiiiiii e 86
HEI H ...Create&Assign imaginary part of HObJeCt ..., 87
HENUMX  Create&Assign integer numerator of exact H-number ...........cccccoviiiiiinennen, 87
HEDENX  Create&Assign integer denominator of exact H-number ...........ccccccooiviiiiinnnnnnn. 87
HEEV ....Create&Assign element Of H-VECIOr .........coooiiiiiiiiiiiie e 88
HEREV ....Create&Assign real part of element of HVeCtOr............cceeiiiiiniiiiii e, 88
HElI EV ....Create&Assign imaginary part of element of H-vector............ccccoovveiiienniencnen, 88
HEEM ...Create&Assign element of H-MatriX ..........coooiiiiiiiiiiiiic e 89
HEREM ....Create&Assign real part of element of HMatriX..........cocoeeviiiiniiinennec e 89
HEI EM ....Create&Assign imaginary part of element of H-matrixX...........ccocoovviiiininiiiennnnnen. 89
HEVMR  ....Create&ASSIigN H-MALriX FOW ........ccceiiiiiiie it 90
HEVMC ....Create&Assign H-matriX COIUMM. ..o 90
Arithmetical Operations on H-0DJects ..., 91
HACPYH  Create&Assign copy of H-object (unary plus) ...........ccoeiiiiiiiiiiiiccce, 91
HANEGH  Create&Assign negative of Hobject (unary Minus) ........cccccceevieeeniienniee e 91
HACNJH  Create&Assign complex conjugate of Hobject........cccccoeeiiiiii e, 91
HAABS ....Create&Assign magnitude of H-NUMDET ...........cooiviiiiie i 92
HAAHH ....Create&Assign addition Of HODJECTS.........coouiiiiiiiiiiee e 92
HASHH ....Create&Assign subtraction of H-ODJECLS..........cocuiiiiiiiiiiiii e 92
HAVHH Create&Assign multiplication of H-ODJECTS ........occvviiiiiiiii e 93
HADHH ....Create&Assign division of HODJECES .........cooviiiiiiiiii e 94



HADPHH  Create&Assign generalized conjugate dot product of H-objects ..........c.ccocveeeneee. 94
HUAHH ....Update addition Of HODJECES..........oiiiiiiiiii e 95
HUSHH ....Update subtraction of H-0DJECES...........cccviiiiiiiie e 95
HUVHH ....Update multiplication of HODJECLS ........cc.ueviiiiiiiieecee e 96
HUDHH ....Update diviSion Of HODJECES ......ccuiiiiiiiiiii s 97
HUNEGH  Update with negative of H-object (Unary mMinus)........ccccocceevieiininnniie e 97
HUCNJH  Update with complex conjugate of H-object ..., 97
Mixed-Type Operations with Fortran Operands.........cccccoevieeeeiiiieeenne 98
HAANF ....Create&Assign addition of Fortran variable to H-number ..............ccocceeiiinnnne 98
HASNF ....Create&Assign subtraction of Fortran variable from H-number...............cccco.c....... 98
HAVHF  ....Create&Assign multiplication of H-object by Fortran variable.................c............. 98
HADHF ....Create&Assign division of H-object by Fortran variable.............ccccocoeeiiininnee. 99
HUANF ....Update addition of Fortran variable to floating-point H-rnumber .............c.ccocceeeeee. 99
HUSNF ....Update subtraction of Fortran variable from floating-point H-number.................... 100
HUVHF  ....Update multiplication of floating-point H-object by Fortran variable...................... 100
HUDHF ....Update division of floating-point H-object by Fortran variable ..............ccccccoeeen. 100
Math Constants and FUNCHIONS........oociiiiiiiiiiie e 101
HCPI ...Create&AsSIgN CONSTANT [......ei i 101
HCE e Create&ASSION CONSTANT €......eiiiiiieiiii et 101
HCLN2  ....Create&AsSSign CONSLANT IN2 ..........ooiiiiiiiiiiiie e 102
HFSQRT  Create&Assign square root of H-NnUMDEr ..., 102
HFEXP ....Create&Assign exponential function of H-number ............ccccoveee e 103
HFLN ....Create&Assign natural logarithm of H-number .............cccoooiiiini 103
HFSI N ....Create&Assign sine of H-NUMDET ... 104
HFCOS ....Create&Assign cosine of H-NUMDET ..........coooiiiiiiii e, 104
HFTAN ....Create&Assign tangent of H-NUMDEr ... 105
HFSI NH  Create&Assign hyperbolic sine of H-number ... 105
HFCOSH  Create&Assign hyperbolic cosine of H-number............cccoviiiiiec e, 106
HFTANH  Create&Assign hyperbolic tangent of H-number...........ccccceeiviiiee e 106
HFASI N Create&Assign arcsine of H-NUMDEr ...t 107
HFACOS  Create&Assign arc-cosine of H-NUMDET ..........coooiiiiiiiiiiiinee e 108
HFATAN  Create&Assign arc-tangent of H-nUMDEr ...........ccoooiiiiiiiiii e, 108
HFATN2  Create&Assign arc-tangent of two real H-number arguments ...........cccccovcveeeene 109
HFASNH  Create&Assign hyperbolic arcsine of H-number ..o 110
HFACSH  Create&Assign hyperbolic arc-cosine of H-number ...........cccccoviiiiiiiiniee e 110
HFATNH  Create&Assign hyperbolic arc-tangent of H-number...........cccooeeiieiiiiiciiieeeeenn. 111
Miscellaneous Numerical OperationsS.........cccceviieeieiiiiee e 112
HUMAXN  Updates floating-point H-number with maximum value.............ccccceeviieeeeiiiieeeens 112
HUM NN  Updates floating-point H-number with minimum value...............cccccocoeiiieiiiieennne 112
HUEPSN  Updates floating-point H-number with machine epsilon value ................ccccocoee.. 113
HFQTXX  Create&Assign integer quotient of division of exact H-numbers...............ccccee.e 113
HFRVXX  Create&Assign reminder of division of exact H-numbers ............cccccceeviiiiiennee 113
HFFACT  Create&Assign factorial of integer Hnumber...........c.coooiiiiii e 114
HAPWR2  Create&Assign product of H-number by integer power of 2 ..........ccovveeiiiieens 114
HUPWR2 Updates floating-point H-number with its product by integer power of 2............... 114
HUSQRT  Updates floating-point H-number with itS square root .............ccocceeieeinieeniieenne 115

Linear EQUAaTIONS. ....cciiiiiieee ettt e e e e 115



HUCLU ....Performs complete LU-decomposition of square H-matrixX...........cccccceevveeriieennnn 115
Linear Eigenvalue Problems .........ccoooiri e 116
HUHES ....Transforms square H-matrix to Hessenberg form.........cccccooveiiiiiiiie e 116
HUEI G ....Solves linear eigenvalue problem..............eoeviie i 116
[/O Binary OPEratiONS ......coocuuiiieiiiieeeeiiee ettt snaeee e 117
HAWRI TE ~ Writes H-0bject t0 biNary file .........ocueveeieeee e 117
HREAD ....Reads H-object from binary file ... 117
LIS SO LU 1 o LU PP PUPRUPR 118
HETNXO  Converts H-number to unformatted text String..........cccvevveeeniieeniieeniee e 118
HETEVO  Converts element of H-vector to unformatted text String .........cccceeeeviieeeeiiiieeennnns 118
HETEMD  Converts element of H-matrix to unformatted text String .........cccccceevceeenieeiiieenne 118
HETNX ....Converts H-number to formatted text String .........ccccoveeiiiieniiienie e 119
HETEV ....Converts element of H-vector to formatted text String ..........cccoccveeeeiiiieeeciiieeeees 120
HETEM ....Converts element of H-matrix to formatted text String ........ccccvvvveeeiviiieeeiniieeeeens 120
Conversion to Fortran Data..........ccccceeeiiiiiiiiee e 121
HEFNX ....Converts finite H-number to Fortran variable............ccccoooiiiiiiniie e 121
HEFEV ....Converts element of H-vector to Fortran variable ............ccccooeiviiii i 121
HEFV ....Converts H-vector t0 FOrtran array........ccccuuueeeuviuiiiiriiiiiiiiisiieieerenr.. 122
HEFEM ....Converts element of H-matrix to Fortran variable .............ccccccoviiie s 122
HEFVR ....Converts H-matrix row to FOrtran array ..........ccccooeeeeieeeiieeeniiee e 123
HEFMC ....Converts H-matrix column to FOrtran array ..........ccccoceeeiieeenieeeniee e 123

HEFM  ....Converts H-matrixX t0 FOIMran array.........cccccceeeeeiiiciiiieeiee e e e 124



